SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

An enzyme which catalyzes the transamination of 4-aminobutyrate with 2-oxoglutarate was Purified 588-fold to homogeneity from Candida guilliermondii var. membranaefaciens, grown with 4-aminobutyrate as sole source of nitrogen.

An apparent relative molecular mass of 107000 was estimated by gel filtration. The enzyme was found to be a dimer made up of two subunits identical in molecular mass (Mr 55000).

The enzyme has a maximum activity in the pH range 7.8–8.0 and a temperature optimum of 45°C.

2-Oxoglutarate protects the enzyme from heat inactivation better than pyridoxal 5′-phosphate.

The absorption spectrum of the enzyme exhibits two maxima at 412 nm and 330 nm.

The purified enzyme catalyzes the transamination of ω-amino acids; 4-aminobutyrate is the best amino donor and low activity is observed with β-alanine.

The Michaelis constants are 1.5 mM for 2-oxoglutarate and 2.3 mM for 4-aminobutyrate.

Several amino acids, such as α,β-alanine and 2-aminobutyrate, are inhibitors (Ki= 38.7 mM, Ki= 35.5mM and Ki= 33.2 mM respectively). Propionic and butyric acids are also inhibitors (Ki= 3 mM and Ki= 2 mM).

Abbreviations
GABA-T

4-aminobutyrate transaminase

SDS

sodium dodecyl sulfate, pyridoxal-5-P, pyridoxal 5′-phosphate

Enzyme
 

4-Aminobutyrate transaminase (EC 2.6.1.19)

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • 1
    Bloch-Tardy, M., Rolland, B. & Gonnard, P. (1974) Biochimie (Paris) 56, 823832.
  • 2
    Buzenet, A. M., Fages, C., Bloch-Tardy, M. & Gonnard, P. (1978) Biochim. Biophys. Acta 522, 400411.
  • 3
    Maitre, M., Ciesielski, L., Cash, C. & Mandel, P. (1978) Biochim. Biophys. Acta 522, 385399.
  • 4
    Bouclier, M., Jung, M. J. & Lippert, B. (1979) Eur. J. Biochem. 98, 363368.
  • 5
    Yonaha, K. & Toyama, S. (1980) Arch. Biochem. Biophys. 200, 156164.
  • 6
    Yonaha, K., Suzuki, K. & Toyama, S. (1985) Eur. J. Biochem. 146, 101106.
  • 7
    Voellmy, R. & Leisinger, T. (1976) J. Bacteriol. 128, 722729.
  • 8
    Pietruszko, R. & Fowden, L. (1961) Ann. Bot. (Lond.) 25, 491511.
  • 9
    Ramos, F., El Guezza, M., Grenson, M. & Wiame, J.-M. (1985) Eur. J. Biochem. 149, 401404.
  • 10
    Fowler, L. J. & John, R. A. (1972) Biochem. J. 130, 569573.
  • 11
    Fowler, L. J. (1973) J. Neurochem. 21, 437440.
  • 12
    Baxter, M. G., Fowler, L. J., Miller, A. A. & Walker, J. M. G. (1973) Br. J. Pharmacol. 47, 481.
  • 13
    Forester, C. W. & Forester, H. F. (1973) J. Bacterial. 114, 10901098.
  • 14
    Der Garabedian, A. (1985) Thèse d'état, Université Paris VI.
  • 15
    Roberts, E., Ayengar, P. & Possner, I. (1953) J. Biol. Chem. 203, 195204.
  • 16
    Der Garabedian, A. M. & Der Garabedian, M. A. (1973) Proc. 3rd Int. Symp. yeasts, Helsinki (Suomalainen, H. & Waller, C., eds.) p. 133.
  • 17
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) J. Biol. Chem. 193, 265275.
  • 18
    Hais, I. M. & Macek, K. (1963) in Paper chromatography, 3rd edn, p. 851, Academic Press, N. Y. and Publishing House of the Czechoslov. Acad. of Sci., Prague .
  • 19
    Davis, B. J. (1964) Ann. N. Y. Acad. Sci. 121, 404427.
  • 20
    Laemmli, U. K. (1970) Nature (Lond.) 227, 680686.
  • 21
    Wada, H. & Snell, E. E. (1961) J. Biol. Chem. 236, 20892095.
  • 22
    Sanada, Y., Shiotani, T., Okuna, E. & Katunuma, N. (1976) Eur. J. Biochem. 69, 507515.
  • 23
    Baxter, C. F. & Roberts, E. (1958) J. Biol. Chem. 233, 11351139.
  • 24
    John, R. A. & Fowler, L. J. (1976) Biochem. J. 155, 645651.
  • 25
    Shousboe, A., Wu, J.-Y. & Roberts, E. (1973) Biochemistry 12, 28682873.
  • 26
    Walksmann, A. & Roberts, E. (1965) Biochemistry 4, 21322139.
  • 27
    Fasella, P. (1967) Annu. Rev. Biochem. 36, 185210.
  • 28
    White, H. L. & Sato, T. L. (1978) J. Neurochem. 31, 4147.
  • 29
    Nakano, Y., Tokunaga, H. & Kitaoko, S. (1977) J. Biochem. (Tokyo) 81, 13751381.
  • 30
    Havaishi, O., Nishizuka, Y., Tatibana, M., Takeschita, M. & Kuno, S. (1961) J. Biol. Chem. 236, 781790.
  • 31
    Scott, E. M. & Jacoby, W. B. (1959) J. Biol. Chem. 234, 932936.
  • 32
    Kirby, N., Fowler, L. J., Edwardson, J. M. & Phillips, I. (1985) Biochem. J. 230, 481488.
  • 33
    Beeler, T. & Churchich, J. E. (1978) Eur. J. Biochem. 85, 365371.
  • 34
    Moses. U. & Churchich. J. E. (1980) Biochim. Biophys. Acta 613, 392400.
  • 35
    John, R. A., Jones, E. D. & Fowler, L. J. (1979) Biochem. J. 177, 721728.
  • 36
    Martinez-Carrion, M. & Jenkins, W. T. (1965) J. Biol. Chem. 240, 35383546.
  • 37
    Matsuzawa, T., Katsunuma, T. & Katunuma, N. (1968) Biochem. Biophys. Res. Commun. 32, 161166.
  • 38
    Peraino, C., Bunville, L. G. & Tahmisian, T. N. (1969) J. Biol. Chem. 244, 22412249.
  • 39
    Taylor, R. T. & Jenkins, W. T. (1966) J. Biol. Chem. 241, 43964405.
  • 40
    Soda, K. & Misono, H. (1968) Biochemistry 7, 41104119.
  • 41
    Yonaha, K., Misono, H., Yamamoto, T. & Soda, K. (1975) J. Biol. Chem. 250, 69836989.
  • 42
    Martinez-Carrion, M., Turano, C., Chiacone, E., Bossa, F., Giartosio, A., Riva, F. & Fasella, P. (1967) J. Biol. Chem. 242, 23972409.
  • 43
    Lindahl, G., Lindstedt, G. & Lindstedt, S. (1967) Arch. Biochem. Biophys. 119, 347352.
  • 44
    Rao, D. R. & Rodwell, V. W. (1962) J. Biol. Chem. 237, 22322238.