SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42000 conferring phosphoribulokinase activity and G a subunit of 39000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase.

The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography.

Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase.

Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.

Enzymes
 

Glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13)

 

glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.12)

 

phosphoribulokinase (EC 2.7.1.19)

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • 1
    Buchanan, B. B. (1980) Annu. Rev. Plant Physiol. 31, 341374.
  • 2
    Ziegler, H. & Ziegler, I. (1965) Planta (Berl.) 65, 369380.
  • 3
    Müller, B. & Ziegler, H. (1969) Planta (Berl.) 85, 96104.
  • 4
    Müller, B., Ziegler, I. & Ziegler, H. (1969) Eur. J. Biochem. 9, 101106.
  • 5
    Müller, B. (1970) Biochim. Biophys. Acta 205, 102105.
  • 6
    Pupillo, P. & Piccari, G. G. (1973) Arch. Biochem. Biophys. 154, 324331.
  • 7
    Pupillo, P. & Piccari, G. G. (1975) Eur. J. Biochem. 51, 475482.
  • 8
    Wolosiuk, R. A. & Buchanan, B. B. (1978) Plant Physiol. 61, 669671.
  • 9
    O'Brien, M. J. & Powls, R. (1976) Eur. J. Biochem. 63, 155161.
  • 10
    O'Brien, M. J., Easterby, J. S. & Powls, R. (1976) Biochim. Biophys. Acta 449, 209223.
  • 11
    O'Brien, M. J., Easterby, J. S. & Powls, R. (1977) Biochim. Biophys. Acta 481, 349358.
  • 12
    Latzko, E., Garnier, R. V. & Gibbs, M. (1970) Biochem. Biophys. Res. Commun. 39, 11401144.
  • 13
    Fischer, K. H. & Latzko, E. (1979) Biochem. Biophys. Res. Commun. 89, 300306.
  • 14
    Wirtz, W., Stitt, M. & Heldt, H. W. (1982) FEBS Lett. 42, 285288.
  • 15
    Wolosiuk, R. A. & Buchanan, B. B. (1978) Arch. Biochem. Biophys. 189, 97101.
  • 16
    Wolosiuk, R. A., Corley, E., Crawford, N. A. & Buchanan, B. B. (1985) FEBS Lett. 189, 212216.
  • 17
    Lazaro, J. J., Sutton, C. W., Nicholson, S. & Powls, R. (1986) Eur. J. Biochem. 156, 423429.
  • 18
    O'Brien, M. J., Woodrow, S., Easterby, J. S. & Powls, R. (1979) Arch. Microbiol. 122, 313319.
  • 19
    Nicholson, S., Easterby, J. S. & Powls, R. (1986) FEBS Lett. 202, 1922.
  • 20
    Laemmli, U. K. (1970) Nature (Lond.) 227, 680685.
  • 21
    Langlotz, P., Wagner, W. & Follmann, H. (1986) Z. Naturforsch. 41c, 275283.
  • 22
    Woodrow, S., O'Brien, M. J., Easterby, J. S. & Powls, R. (1979) Eur. J. Biochem. 98, 425430.
  • 23
    Yonuschot, G. R., Ortwerth, B. J. & Koeppe, O. J. (1970) J. Biol. Chem. 245, 41934198.
  • 24
    Wolosiuk, R. A. & Buchanan, B. B. (1976) J. Biol. Chem. 251, 64566461.
  • 25
    Cerff, R. (1978) Eur. J. Biochem. 82, 4553.
  • 26
    Pupillo, P. & Faggiani, R. (1979) Arch. Biochem. Biophys. 194, 581592.
  • 27
    Wara-Aswapati, O., Kemble, R. J. & Bradbeer, J. W. (1980) Plant Physiol. 66, 3439.
  • 28
    de Looze, S. & Wagner, E. (1983) Physiol. Plant. 57, 231237.
  • 29
    Ferri, G., Comerio, G., Iadorala, P., Zapponi, M. C. & Speranza, M. L. (1978) Biochim. Biophys. Acta 522, 1931.
  • 30
    Cerff, R. & Chambers, S. E. (1978) Hoppe-Seyler's Z. Physiol. Chem. 359, 769772.
  • 31
    Cerff, R. (1979) Eur. J. Biochem. 94, 243247.
  • 32
    Cerff, R. & Chambers, S. E. (1979) J. Biol. Chem. 254, 60946098.
  • 33
    Cerff, R. (1978) Plant Physiol. 61, 369372.
  • 34
    Gardeman, A., Stitt, M. & Heldt, H. W. (1983) Biochim. Biophys. Acta 722, 5160.