SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

Preparations of the trehalose-6-phosphate synthase/phosphatase complex from Saccharomyces cerevisiae contain three polypeptides with molecular masses 56, 100 and 130 kDa, respectively. Recently, we have cloned the gene for the 56-kDa subunit of this complex (TPS1) and found it to be identical with CIFI, a gene essential for growth on glucose and for the activity of trehalose-6-phosphate synthase. Peptide sequencing of the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex (TPS2) revealed one sequence to be 100% identical with the deduced amino acid sequence of the upstream region of PPH3 on the right arm of chromosome IV. This sequence was used to clone an upstream region of PPH3 containing an open reading frame of 2685 nucleotides, predicted to encode a polypeptide of 102.8 kDa. The N-terminal sequence, as well as three internal amino acid sequences, obtained from peptide sequencing of the 100-kDa subunit, were identical with specific regions of the deduced amino acid sequence. Thus, the sequence cloned represents TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex. Interestingly, a stretch of about 500 amino acids from the first part of TPS2 was 33% identical with the entire TPS1 sequence. Disruption of TPS2 had no effect on trehalose-6-phosphate synthase activity but caused complete loss of trehalose-6-phosphate phosphatase activity, measured in vitro, and accumulation of excessive amounts of trehalose-6-phosphate instead of trehalose upon heat shock or entrance into stationary phase in vivo. These results suggest that TPS2 codes for the structural gene of the trehalose-6-phosphate phosphatase. Heat shock induced an increase in trehalose-6-phosphate phosphatase activity and this was preceded by an accumulation in TPS2 mRNA, suggesting that the trehalose-6-phosphate phosphatase is subjected to transcriptional control under heat-shock conditions.

Abbreviations
Tre6P

trehalose-6-phosphate

PCR

polymerase chain reaction

ORF

open reading frame

TPS2

100-kDa subunit of trehalose-6-phosphate synthase/phosphatase complex

Enzymes
 

UDP-glucose: d-glucose-6-phosphate-1-glucosyltransferase (EC 2.4.1.1.5)

 

trehalose-6-phosphate phosphohydrolase (EC 3.1.3.12)

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • Achstetter, T., Emter, O., Ehmann, C. & Wolf, D. H. (1984) Proteolysis in eucaryotic cells, J. Biol. Chem. 259, 1333413343.
  • Attfield, P. V. (1987) Trehalose accumulation in Saccharomyces cerevisiae during exposure to agents that induce heat shock response, FEBS Lett. 225, 259263.
  • Bell, W., Klaassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., van der Zee, P. & Wiemken, A. (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation, Eur. J. Biochem. 209, 951959.
  • Cabib, E. & Leloir, F. L. (1958) The biosynthesis of trehalose-6-phosphate, J. Biol. Chem. 231, 259275.
  • De Virgilio, C., Simmen, U., Hottiger, T., Boller, T. & Wiemken, A. (1990) Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide, FEBS Lett. 273, 107110.
  • De Virgilio, C., Piper, P., Boller, T. & Wiemken, A. (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp104 and in the absence of protein synthesis, FEBS Lett. 288, 8690.
  • Devereux, J., Haeberli, P. & Smithies, O. (1984) A comparative set of sequences analysis programs for the VAX, Nucleic Acids Res. 12, 387395.
  • Domdey, H., Apostol, B., Lin, R.-J., Newman, A., Brody, E. & Abelson, J. (1984) Lariat structures are in vivo intermediates in yeast pre-mRNA splicing, Cell 39, 611621.
  • Elander, M. (1968) Trehalose-6-Phosphat-Synthase aus Bäckerhefe, Ark. Kemi 31, 1730.
  • Elbein, A. D. (1974) The metabolism of α,α-trehalose, Adv. Carbohyd. Chem. Biochem. 30, 227256.
  • François, J., Neves, M.-J. & Hers, H.-G. (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae: Evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase, Yeast 7, 575587.
  • Gonzáles, M. I., Stuck, R., Blázquez, M. A., Feldmann, H. & Gancedo, C. (1992) Molecular cloning of CIF1, a yeast gene necessary for growth on glucose, Yeast 8, 183192.
  • Hohmann, S., Huse, K., Valentin, E., Mbonyi, K., Thevelein, J. M. & Zimmermann, F. (1992) Glucose-induced regulatory defects in the Saccharomyces cerevisiae bypl growth initiation mutant and identification of MIG1 as a partial suppressor, J. Bacteriol. 174, 41834188.
  • Hottiger, T., Schmutz, P. & Wiemken, A. (1987a) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae, J. Bacteriol. 169, 55185522.
  • Hottiger, T., Boller, T. & Wiemken, A. (1987b) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae, FEBS Lett. 220, 113115.
  • Hottlger, T., Doller, T. & Wiemken, A. (1989) Correlation between trehalose content and heat resistance in yeast mutants altered in the Ras/adenylate cyclase pathway – is trehalose a thermoprotectant FEBS Lett. 255, 431434.
  • Hottiger, T., De Virgilio, C., Bell, W., Boller, T. & Wiemken, A. (1992) The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae, Eur. J. Biochem. 210, 125132.
  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T 4, Nature 227, 680685.
  • Londesborough, J. & Vuorio, O. (1991) Trehalose-6-phosphate synthase/phosphatase complex from baker's yeast: Purification of a proteolytically activated from, J. Gen. Microbiol. 137, 323330.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin reagent, J. Biol. Chem. 193, 265275.
  • Maniatis, T., Fritsch, E. F. & Sambrook, J. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor , NY .
  • Miozzari, G. F., Niederberger, P. & Hütter, R. (1978) Permeabilization of microorganisms by Triton X-100, Anal. Biochem. 90, 220233.
  • Navon, G., Shulman, R. G., Yamane, T., Eccleshall, T. R., Lam, K.-B., Baronowsky, J. J. & Marmur, J. (1979) Phosphorus-31 nuclear magnetic resonance studies of wild type and glycolytic pathway mutants of Saccaromyces cerevisiae, Biochemistry 18, 44874498.
  • Panek, A. C., de Araujo, P. S., Moura-Neto, V. & Panek, A. D. (1987) Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces cerevisiae, Curr. Genet. 11, 459465.
  • Piper, P. W. & Lockheart, A. (1988) A temperature sensitive mutant of Saccharomyces cerevisiae defective in the specific phosphatase of trehalose biosynthesis, FEMS Microbiol. Lett. 49, 245250.
  • Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: Effects on cell growth and bud morphogenesis, Mol. Cell. Biol. 11, 48764884.
  • Rose, M. D., Novic, P., Thomas, J. H., Botstein, D. & Fink, G. R. (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containig shuttle vector, Gene (Amst.) 60, 237243.
  • Rothstein, R. J. (1983) One step gene disruption in yeast, Methods Enzymol. 101, 202211.
  • Sambrook, J., Fritsch, E. F. & Maniatis, F. (1989) Molecular cloning, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbour , NY .
  • Sanger, F., Nickler, S. & Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors, Proc. Natl Acad. Sci. USA 74, 54635467.
  • Sherman, F., Fink, G. R. & Hicks, J. B. (1986) Methods in yeast genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor , N. Y.
  • Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98, 503517.
  • Thevelein, J. M. (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae, Antonie Leeuwenhoek Int. J. Gen. Microbiol. 62, 109130.
  • van de Poll, K. W. & Schamhart, D. H. J. (1977) Characterization of a regulatory mutant of fructose-1,6-bisphosphatase in Saccharomyces carlsbergensis, Mol. Gen. Genet. 154, 6166.
  • Van Laere, A. (1989) Trehalose, reserve and/or stress metabolite FEMS Microbiol. Rev. 63, 201210.
  • Vandercammen, A., François, J. & Hers, H. G. (1989) Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Saccharomyces cerevisiae, Eur. J. Biochem. 182, 613620.
  • Vernet, T., Dignard, D. & Thomas, D. Y. (1987) A family of yeast expression vectors containing the phage f1 intergenic region, Gene (Amst.) 52, 225233.
  • Vuorio, O., Londesborough, J. & Kalkkinen, N. (1992) Trehalose synthase: Purification of the intact enzyme and cloning of the structural genes, Yeast 8, S626.
  • Wiemken, A. (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate, Antonie Leeuwenhoek Int. J. Gen. Microbiol. 58, 209217.
  • Winkler, K., Kienle, I., Burgert, M., Wagner, J.-C. & Holzer, H. (1991) Metabolic regulation of the trehalose content of vegetative yeast, FEBS Lett. 291, 269272.
  • Werner-Washburne, M., Becker, J., Kosic-Smithers, J. & Craig, E. A. (1989) Yeast hsp70 RNA levels vary in response to the physiological status of the cell, J. Bacteriol. 171, 26802688.