1. Top of page
  2. Abstract

The purpose of this work was to analyze the interactions between oxidative phosphorylations and glucose metabolism on yeast cells aerobically grown on lactate as carbon source and incubated in a resting cell medium. On such respiratory-competent yeast cells, four different metabolic steady states have particularly been studied: (a) glucose feeding under anaerobiosis, (b) ethanol supply under aerobiosis, (c) glucose supply under aerobiosis and (d) glucose plus ethanol under aerobiosis. For each condition, we measured: (a) the cellular ATP/ADP ratio and NADH content sustained under these conditions, (b) the glucose consumption rate (glucose conditions) and the respiratory rate (aerobic conditions).

Under aerobic conditions, when ethanol is used as substrate, the ATP/ADP ratio and NADH level are very high as compared with glucose feeding. However, the rate of oxygen consumption is similar under both conditions. The main observation is a large increase in the respiratory rate when both glucose and ethanol are added. This increase corresponds to an ATP/ADP ratio and a NADH level lower than those observed with ethanol but higher than those with glucose. Therefore the response of the respiratory rate to the ATP/ADP ratio depends on the redox potential. We studied the way in which the ATP-consuming activity was increased under glucose + ethanol conditions. By NMR experiments, it appears that neither the futile cycle at the level of the phosphofructo-1-kinase/fructo-1,6-bisphosphatase couple nor the synthesis of carbohydrate stores could account for the increase in oxidative phosphorylation. However, it is shown that, in the presence of glucose + ethanol, ATP consumption is strongly stimulated. It is hypothesized that this consumption is essentially due to the combination of the well-known plasma membrane proton-ATPase activation by glucose and the high phosphate potential due to oxidative ethanol metabolism. While it is well documented that oxidative phosphorylations inhibit the glycolytic flux, i.e. the Pasteur effect, we clearly show in this work that the glycolytic pathway limits the ability of mitochondria to maintain a cellular phosphate potential.


Trehalase (EC


amyloglucosidase (EC


  1. Top of page
  2. Abstract
  • Balaban, R. S. (1990) Regulation of oxidative phosphorylation in the mammalian cell, Am. J. Physiol. 29, C377C389.
  • Beauvoit, B., Rigoulet, M. & Guérin, B. (1989) Thermodynamic and kinetic control of ATP synthesis in yeast mitochondria: role of ◃, FEBS Lett. 244, 255258.
  • Beauvoit, B., Rigoulet, M., Raffard, G., Canioni, P. & Guérin, B. (1991) Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply, Biochemistry 30, 1121211220.
  • Bergmeyer, H. U. (1974) in Methods in enzymic analysis, vols 3 and 4, Academic Press, New York .
  • Berry, M. N., Clarke, D. G., Grivell, A. R. & Wallace, P. G. (1983) The calorigenic nature of hepatic ketogenesis: an explanation for the stimulation of respiration induced by fatty acid substrates, Eur. J. Biochem. 131, 205214.
  • Brand, M. D. & Murphy, M. P. (1987) Control of electron flux through the respiratory chain in mitochondria and cells, Biol. Rev. 62, 141193.
  • Cain, K. & Griffith, D. E. (1977) Studies of energy-linked reactions: localization of the site of action of trialkyltin in yeast mitochondria, Biochem. J. 162, 575580.
  • Campbell-Burk, S. L., den Hollander, J. A., Kuroiwa, C. M. & Shulman, R. G. (1987) 31P NMR saturation-transfer and 13C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis, Biochemistry 26, 74937500.
  • Chance, B. & Williams, G. R. (1955) Respiratory enzymes in oxidative phosphorylation: 1-Kinetics of oxygen utilization, J. Biol. Chem. 217, 383393.
  • Chance, B., Leigh, J. S., Kent, J., MacCully, K., Nioka, S., Clark, B. J., Maris, J. M. & Graham, T. (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance, Proc. Natl Acad. Sci. USA 83, 94589462.
  • den Hollander, J. A., Brown, T. R., Ugurbil, K. & Shulman, R. G. (1979) 13C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells, Proc. Natl Acad. Sci. USA 76, 60966100.
  • den Hollander, J. A., Ugurbil, K., Brown, T. R. & Shulman, R. G. (1981) Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast, Biochemistry 20, 58715880.
  • den Hollander, J. A., Ugurbil, K., Brown, T. R., Bednar, M., Redfield, C. & Shulman, R. G. (1986a) Studies of anaerobic and aerobic glycolysis in Saccharomyces cerevisiae, Biochemistry 25, 203211.
  • den Hollander, J. A., Ugurbil, K. & Schulman, R. G. (1986b) 31P and 13C NMR studies of intermediates of aerobic and anaerobic glycolysis in Saccharomyces cerevisiae, Biochemistry 25, 212219.
  • de Vries, S. & Marres, C. A. M. (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism, Biochim. Biophys. Acta 895, 205239.
  • Erecinska, M. & Wilson, D. F. (1982) Regulation of cellular energy metabolism, J. Biomemb. Biol. 70, 114.
  • Gancedo, C. & Serrano, R. (1989) Energy-yielding metabolism, in The yeasts (Rose, A. H. & Harrison, J. S., eds), 2nd edn, vol. 3, pp. 205259, Academic Press, London .
  • Gancedo, J. M. (1992) Carbon catabolite repression in yeast, Eur. J. Biochem. 206, 297313.
  • Gellerich, F. N., Bonhensack, R. & Kunz, W. (1983) Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes, Biochim. Biophys. Acta 722, 381391.
  • Goffeau, A. & Slayman, C. W. (1981) The proton-translocating ATPase of the fungal plasma membrane, Biochim. Biophys. Acta 639, 197223.
  • Gosalvez, M., Perez-Garcia, J. & Weinhouse, S. (1974) Competition for ADP between pyruvate kinase and mitochondrial oxidative phosphorylation as a control mechanism in glycolysis, Eur. J. Biochem. 46, 133140.
  • Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., Van der Meer, R. & Tager, J. M. (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration, J. Biol. Chem. 257, 27542757.
  • Gronberg, M. & Flatmark, T. (1988) Inhibition of the H+-ATPase in bovine adrenal chromaffin granule ghosts by diethylstilbestrol, FEBS Lett. 229, 4044.
  • Guérin, B., Labbe, P. & Somlo, M. (1979) Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios, Methods Enzymol. 55, 149159.
  • Guérin, B. (1991) Mitochondria in The yeasts (Rose, A. H. & Harrison, J. S., eds) vol. 4, pp 541600, Academic Press, London .
  • Hassinen, I., Ito, K., Nioka, S. & Chance, B. (1990) Mechanism of fatty acid effect on myocardial oxygen consumption. A phosphorus NMR study, Biochim. Biophys. Acta 1019, 7380.
  • Katz, L. A., Koretsky, A. P. & Balaban, R. S. (1988) Activation of dehydrogenase activity and cardiac respiration: a 31P NMR study, Am. J. Physiol. 29, H185H188.
  • Koretsky, A. & Balaban, R. S. (1987) Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P NMR and NAD(P)H fluorescence study, Biochim. Biophys. Acta 893, 398408.
  • Küster, U., Letko, G., Kunz, W., Duszynsky, J., Bogucka, K. & Wojtczak, L. (1981) Influence of different energy drains on the interrelationship between the rate of respiration, proton-motive force and adenine nucleotide patterns in isolated mitochondria, Biochim. Biophys. Acta 636, 3238.
  • Lagunas, R. & Gancedo, C. (1983) Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae, Eur. J. Biochem. 137, 479483.
  • Lauquin, G., Lunardi, J. & Vignais, P. V. (1976) Effect of genetic and physiological manipulations on the kinetic and binding parameters of the adenine nucleotide translocator in Saccharomyces cerevisiae and Candida utilis, Biochimie 58, 12131220.
  • Lundin, A., Rickardson, A. & Thore, A. (1976) Continuous monitoring of ATP-converting reactions by purified firefly luciferase, Anal. Biochem. 75, 611620.
  • MacEnery, M. W. & Pedersen, P. L. (1986) Diethylstilbestrol: a novel Fo-directed probe of the mitochondrial proton ATPase, J. Biol. Chem. 261, 17451752.
  • MacEnery, M. W., Hullihen, J. & Pedersen, P. L. (1989) F. “proton channel'” of rat liver mitochondria, J. Biol. Chem. 264, 1202912036.
  • Mazat, J. P., Jean-Bart, E., Rigoulet, M. & Guérin, B. (1986) Control of oxidative phosphorylations in yeast mitochondria. Role of the phosphate carrier, Biochim. Biophys. Acta 849, 715.
  • Mazon, M. J., Gancedo, J. M. & Gancedo, C. (1982) Phosphorylation and inactivation of yeast fructose-biphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP, Eur. J. Biochem. 127, 605608.
  • Moreno-Sanchez, R., Hogue, B. A. & Hansford, R. G. (1990) Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation, Biochem. J. 268, 421428.
  • Nobes, C. D., Hay, W. W. & Brand, M. D. (1990) The mechanism of stimulation of respiration by fatty acids in isolated hepatocytes, J. Biol. Chem. 265, 1291012915.
  • Ouhabi, R., Rigoutet, M., Lavie, J. L. & Guérin, B. (1991) Respiration in non-phosphorylating yeast mitochondria. Role of nonohmic proton conductance and intrinsic uncoupling, Biochim. Biophys. Acta 1060, 293298.
  • Pardo, L. A., Sanchez, L. M., Lazo, P. S. & Ramos, S. (1991) In vitro activation of the Saccharomyces cerevisiae Ras:adenylate cyclase system by glucose and some of its analogues. FEBS Lett. 290, 4348.
  • Portillo, F. & Mazon, M. J. (1985) Activation of yeast plasma membrane ATPase by phorbol ester, FEBS Lett. 192, 9598.
  • Racker, E. (1974) History of the Pasteur effect and its pathobiology, Mol. Cell. Biochem. 5, 1723.
  • Reibstein, D., den Hollander, J. A., Kuroiwa, C. M. & Shulman, R. G. (1986) Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis, Biochemistry 25, 219227.
  • Rigoulet, M., Ouhabi, R., Leverve, X., Putod-Paramelle, F. & Guérin, B. (1989) Almitrine, a new kind of energy-transduction inhibitor acting on mitochondrial ATP synthase, Biochim. Biophys. Acta 975, 325329.
  • Schuddemat, J., Van den Broek, P. J. A. & Van Steveninck, J. (1988) The influence of ATP on sugar uptake mediated by the constitutive glucose carrier of Saccharomyces cerevisiae, Biochim. Biophys. Acta 937, 8187.
  • Serrano, R. (1980) Effect of ATPase inhibitors on the proton pump of respiratory-deficient yeast, Eur. J. Biochem. 105, 419424.
  • Serrano, R. (1983) In vivo glucose activation of the yeast plasma membrane ATPase, FEBS Lett. 156, 1114.
  • Serrano, R. (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi, Biochim. Biophys. Acta 947, 128.
  • Sillerud, L. O. & Shulman, R. G. (1983) Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance, Biochemistry 22, 10871094.
  • Sols, A., Gancedo, C. & De la Fuente, G. (1971) Energy-yielding metabolism in yeasts, in The yeasts (Rose, A. H. & Harrison, J. S., eds) vol. 2, pp. 271307, Academic Press, London .
  • Tager, J. M., Wanders, R. J. A., Groen, A. K., Kunz, W., Bohnensack, R., Küster, U., Letko, G., Böhme, G., Duszynski, J. & Wojtczack, L. (1983) Control of mitochondrial respiration, FEBS Lett. 151, 19.
  • Tanaka, A., Chance, B. & Quistorff, B. (1989) A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver, J. Biol. Chem. 264, 1003410040.
  • Warburg, O. (1926) Über die Wirkung von Blausäureathylester (Athylcarbylamin) und die Pasteursche Reaktion, Biochem. Z. 172, 432435.