1. Top of page
  2. Abstract

The sequences of two genes encoding the protein-serine/threonine-phosphatases PPZ1 and PPZ2 from Saccharomyces cerevisiae have been determined. The molecular masses of PPZ1 and PPZ2 are 77.5 and 78.5 kDa, respectively, and each protein consists of two distinct domains. The C-terminal half of each molecule is 93% identical in PPZ1 and PPZ2, and comprises the protein-phosphatase catalytic domain, while the N-terminal halves, which are rich in serine and asparagine (PPZ1) or serine and arginine (PPZ2), are only 43% identical. Both N-termini start with the amino acids Met-Gly-Asn, suggesting that after removal of the initiating methionine, the N-terminal glycine of the mature protein is myristoylated. Disruption of the gene encoding either PPZ1 or PPZ2 leads to an increase in cell size and cell lysis, the latter being more pronounced in cells disrupted in PPZ1. Haploid cells carrying a double disruption of PPZ1 and PPZ2 genes also show a marked increase in cell size and cell lysis, which can be significantly reduced by the addition of 1 M sorbitol to the growth medium. These results suggest that PPZ1 and PPZ2 play a role in regulating osmotic stability.


protein phosphatase

G protein

guanine-nucleotide-binding regulatory protein


mitogen-activated protein

SC medium

synthetic complete medium


  1. Top of page
  2. Abstract
  • Arndt, K. T., Styles, C. A. & Fink, G. R. (1989) A suppressor of HIS4 transcription defect encodes a protein with homology to the catalytic subunit of protein-phosphatases, Cell 56, 527537.
  • Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. & Gustin, M. C. (1993) Science 259, 17601762.
  • Chen, M. X., Chen, Y. H. & Cohen, P. T. W. (1992) Polymerase chain reactions using Saccharomyces, Drosophila and human DNA predict a large family of protein serine/threonine phosphatases, FEBS Lett. 306, 5458.
  • Clotet, J., Posas, F., Casamayor, A., Schaaff-Gerstenschläger, I. & Ariño, J. (1991) The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation, Curr. Genet. 19, 339342.
  • Cohen, P. (1989) The structure and regulation of protein-phosphatases, Annu. Rev. Biochem. 58, 453508.
  • Cohen, P. (1992) Signal integration at the level of protein kinases, protein-phosphatases and their substrates, Trends Biochem. Sci. 17, 408413.
  • Cohen, P. T. W. (1990) Molecular biology of protein serine/threonine phosphatases regulating metabolism, Genetics and human nutrition (Randle, P. J., Bell, J. & Scott, J., eds) pp. 2740, John Libbey & Co., London .
  • Cohen, P. T. W. (1991) Cloning of protein serine/threonine phosphatases, Methods Enzymol. 201, 398408.
  • Cohen, P. T. W., Brewis, N. D., Hughes, V. & Mann, D. J. (1990) Protein serine/threonine phosphatases; an expanding family, FEBS Lett. 268, 355359.
  • Costigan, C., Gehrung, S. & Snyder, M. (1992) A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth, Mol. Cell. Biol. 12, 11621178.
  • Cyert, M. S., Kunisawa, R., Kaim, D. & Thorner, J. (1991) Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein-phosphatase, Proc. Natl Acad. Sci. USA 88, 73767380.
  • da Cruz e Silva, E. F., Hughes, V., McDonald, P., Stark, M. J. R. & Cohen, P. T. W. (1991) Protein phosphatase 2Bw and protein-phosphatase Z are Saccharomyces cerevisiae enzymes, Biochim. Biophys. Acta 1089, 269272.
  • Dent, P., Lavoinne, A., Nakielny, S., Caudwell, F. B., Watt, P. & Cohen, P. (1990) The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle, Nature 348, 302308.
  • Devereux, J., Haeberli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12, 387395.
  • Elion, E. A., Grisafi, P. L. & Fink, G. R. (1990) Cell 60, 649664.
  • Feinberg, A. P. & Vogelstein, B. (1984) A Technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem. 137, 266267.
  • Feng, D.-F. & Doolittle, R. F. (1990) Progressive alignment and phylogenetic tree construction of protein sequences, Methods Enzymol. 183, 375387.
  • Gietz, R. D. & Sugino, A. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene (Amst.) 74, 527534.
  • Guthrie, C. & Fink, G. R. (1991) Guide to yeast genetics and molecuar biology, Methods Enzymol. 194, 1933.
  • Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A. & Pringle, J. R. (1991) CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterisation, and hormology to the B subunit of mammalian type 2A protein-phosphatase, Mol. Cell. Biol. 11, 57675780.
  • Ito, H., Fukuda, Y., Murata, K. & Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations, J. Bacteriol. 153, 163168.
  • Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the iniation of translation, J. Biol. Chem. 266, 1986719870.
  • Lee, K. S. & Levin, D. E. (1992) Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog, Mol. Cell. Biol. 12, 172182.
  • Levin, D. E. & Bartlett-Heubusch, E. (1992) Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect, J. Cell Biol. 116, 12211229.
  • Li, H. & Bingham, P. M. (1991) Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing, Cell 67, 335342.
  • Liu, Y., Ishii, S., Tokai, M., Tsutsumi, H., Ohki, O., Akada, R., Tanaka, K., Tsuchiya, E., Fukui, S. & Miyakawa, T. (1991) The Saccharomyces cerevisiae genes (CMP1 and CMP2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein-phosphatase 2B, Mol. & Gen. Genet. 227, 5259.
  • Melnick, L. & Sherman, F. (1990) Nucleotide sequence of the COR region, a cluster of six genes in the yeast Saccharomyces cerevisiae, Gene (Amst.) 87, 157166.
  • Ohkura, H., Kinoshita, N., Miyatani, S., Toda, T. & Yanagida, M. (1989) The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein-phosphatase, Cell 57, 9971007.
  • Paravicini, G., Cooper, M., Friedeli, L., Smith, D. J., Carpenter, J-L, Klig, L. S. & Payton, M. A. (1992) The osmotic integrity of the yeast cell requires a functional PKC1 gene product, Mol. Cell. Biol. 12, 48964905.
  • Posas, F., Casamayor, A. & Ariño, J. (1993a) The PPZ protein-phosphatases are involved in the mintenance of osmotic stability of yeast cells, FEBS Lett. 318, 282286.
  • Posas, F., Casamayor, A., Morral, N. & Ariño, J. (1992) Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region, J. Biol. Chem. 267, 1173411740.
  • Posas, F., Clotet, J., Muns, M. T., Corominas, J. A., Casamayor, A. & Ariño, J. (1993b) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation, J. Biol. Chem. 268, 13491354.
  • Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis, Mol. Cell. Biol. 11, 48764884.
  • Rothstein, R. J. (1983) One-step gene disruption in yeast, Methods Enzymol. 101, 202211.
  • Schmidt, M. F. G. (1989) Fatty acylation of proteins, Biochim. Biophys. Acta 988, 411426.
  • Schreiber, S. L. (1992) Immunophilin-sensitive protein phosphatase action in cell signaling pathways, Cell 70, 365368.
  • Sherman, F., Fink, G. R. & Hicks, J. B. (1986) A laboratory manual for methods in yeast genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY .
  • Sneddon, A. A., Cohen, P. T. & Stark, M. J. (1990) Saccharomyces cerevisiae protein-phosphatase 2A performs an essential cellular function and is encoded by two genes, EMBO J. 9, 43394346.
  • Sneddon, A. A. & Stark, M. J. R. (1991) Yeast protein serine-threonine phosphatase genes and cell division cycle control, Advances in protein phosphatases. Leuven University Press, Leuven .
  • Torres, L., Martin, H., García-Saez, M. I., Arroyo, J., Molina, M., Sánchez, M. & Nombela, C. (1991) A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants, Mol Microbiol. 5, 28452854.
  • Towler, D. A., Enbanks, S. R., Towery, D. S., Adams, S. P. & Glaser, L. (1987) Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase. J. Biol. Chem. 262, 10301036.
  • Yanagida, M., Kinoshita, N., Stone, E. M. & Yamano, H. (1992) Protein phosphatases and cell division cycle control. In regulation of the eukaryotic cell cycle. Ciba Found. Symp. 170, 130146.
  • Yonemoto, W., McGlone, M. L. & Taylor, S. S. (1993) N-Myristylation of the catalytic subunit of cAMP-dependent protein kinase conveys structural stability, J. Biol. Chem. 268, 23482352.