SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

The structural and spectrochemical effects of the replacement of Met44 in the hydrophobic surface patch of azurin from Pseudomonas aeruginosa by a lysine residue were studied as a function of the ionization state of the lysine. In the pH range 5–8, the optical absorption, resonance Raman, EPR and electron spin-echo envelope modulation spectroscopic properties of wild-type and Met44-[RIGHTWARDS ARROW]Lys (M44K) azurin are very similar, indicating that the Cu-site geometry has been maintained. At higher pH, the deprotonation of Lys44 in M44K azurin (pKa 9–10) is accompanied by changes in the optical-absorption maxima (614 nm and 450 nm instead of 625 nm and 470 nm) and in the EPR g value (2.298 instead of 2.241), indicative of a change in the bonding interactions of Cu at high pH. The strong pH dependence of the electron self-exchange rate of M44K azurin supports the assignment of Lys44 as the ionizable group and demonstrates the importance of the hydrophobic patch for electron transfer. The pH dependence of the midpoint potentials of wild-type and M44K azurin can be accounted for by the ionizations of His35 and His83 and by the additional electrostatic effect of the mutation.

Abbreviations
Ches

2-(N-cyclohexylamino)ethanesulfonic acid

Cu(I) azurin

reduced azurin

Cu(II) azurin

oxidized azurin

Em

midpoint potential

ESE

electron self-exchange

ESEEM

electron spin-echo envelope modulation

M44K

Met44[RIGHTWARDS ARROW]Lys

RR

resonance Raman

wt

wild type

FT

Fourier transform

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • Adman, E. T., Canters, G. W., Hill, H. A. O. & Kitchen, N. A. (1982) The effect of pH and temperature on the structure of the active site of azurin from Pseudomonas aeruginosa, FEBS Lett. 143, 287292.
  • Adman, E. T. (1991) Copper protein structures, Adv. Protein Chem. 42, 145197.
  • Bashford, D., Karplus, M. & Canters, G. W. (1988) Electrostatic effects of charge perturbations introduced by metal oxidation in proteins. A theoretical analysis, J. Mol. Biol. 203, 507510.
  • Bashford, D. & Karplus, M. (1990) pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model, Biochemistry 29, 1021910225.
  • Bashford, D. (1991) Electrostatic effects in biological molecules, Curr. Opin. Struct. Biol. 1, 175184.
  • Blair, D. F., Campbell, G. W., Schoonover, J. R., Chan, S. I., Gray, H. B., Malmström, B. G., Pecht, I., Swanson, B. I., Woodruff, W. H., Cho, W. K., English, A. M., Fry, H. A., Lum, V. & Norton, K. A. (1985) Resonance Raman studies of blue copper proteins: effect of temperature and isotropic substitutions. Structural and thermodynamic implications, J. Am. Chem. Soc. 107, 57555766.
  • Canters, G. W., Hill, H. A. O., Kitchen, N. A. & Adman, E. T. (1984a) The assignment of the 1H nuclear magnetic resonance spectrum of azurin, Eur. J. Biochem. 138, 141152.
  • Canters, G. W., Hill, H. A. O., Kitchen, N. A. & Adman, E. T. (1984b) A proton NMR study of the electron exchange between reduced and oxidized azurin from Pseudomonas aeruginosa, J. Magn. Reson. 57, 123.
  • Colaneri, M. J., Potenza, J. A., Schugar, H. J. & Peisach, J. (1990) Single-crystal electron spin-echo envelope modulation study of Cu(II)-doped zinc bis(1,2-dimethylimidazole) dichloride, J. Am. Chem. Soc. 112, 94519458.
  • Cutler, R. L., Davies, A. M., Creighton, S., Warshel, A., Moore, G. R., Smith, M. & Mauk, A. G. (1989) Role of arginine-38 in regulation of the cytochrome c oxidation-reduction equilibrium, Biochemistry 28, 31883197.
  • Davis, M. E. & McCammon, J. A. (1990) Electrostatics in biomolecular structure and dynamics, Chem. Rev. 90, 509521.
  • Farver, O., Skov, L. K., van de Kamp, M., Canters, G. W. & Pecht, I. (1992) The effect of driving force on intramolecular electron transfer in proteins; studies on single-site mutated azurins, Eur. J. Biochem. 210, 399403.
  • Gellman, S. H. (1991) On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces, Biochemistry 30, 66336636.
  • Gewirth, A. A., Cohen, S. L., Schugar, H. J. & Solomon, E. I. (1987) Spectroscopic and theoretical studies of the unusual EPR parameters of distorted tetrahedral cupric sites: correlations to X-ray spectral features of core levels, Inorg. Chem. 26, 11331146.
  • Gewirth, A. A. & Solomon, E. I. (1988) Electronic structure of plastocyanin: excited state spectral features, J. Am. Chem. Soc. 110, 38113819.
  • Groeneveld, C. M. & Canters, G. W. (1985) The pH dependence of the electron self-exchange rate of azurin from Pseudomonas aeruginosa as studied by 1H-NMR, Eur. J. Biochem. 153, 559564.
  • Groeneveld, C. M., Aasa, R., Reinhammar, B. & Canters, G. W. (1987) EPR of azurins from Pseudomonas aeruginosa and Alcaligenes denitrificans demonstrates pH-dependence of the copper-site geometry in Pseudomonas aeruginosa protein, J. Inorg. Biochem. 31, 143154.
  • Groeneveld, C. M. & Canters, G. W. (1988) NMR study of structure and electron transfer mechanism of Pseudomonas aeruginosa azurin, J. Biol. Chem. 263, 167173.
  • Han, J., Adman, E. T., Beppu, T., Codd, R., Freeman, H. C., Huq, L., Loehr, T. M. & Sanders-Loehr, J. (1991) Resonance Raman spectra of plastocyanin and pseudoazurin: evidence for conserved cysteine ligand conformations in cupredoxins (blue copper proteins), Biochemistry 30, 1090410913.
  • Han, J., Loehr, T. M., Lu, Y., Valentine, J. S., Averill, B. A. & Sanders-Loehr, J. (1993) Resonance Raman studies of azurin, pseudoazurin, nitrite reductase and mutant copper-zinc superoxide dismutase. Excitation profiles identify multiple Cys[RIGHTWARDS ARROW]Cu CT transitions in Type I copper sites, J. Am. Chem. Soc. 115, 42564263.
  • Hanania, G. I. H., Irvine, D. H., Eaton, W. A. & George, P. (1967) Thermodynamic aspects of the potassium hexacyanoferrate(III)-(II) system. II. Reduction potential, J. Phys. Chem. 71, 20222030.
  • Herschbach, D. R. & Laurie, V. W. (1961) Anharmonic potential constants and their dependence upon bond length, J. Chem. Phys. 35, 458463.
  • Jiang, F., McCracken, J. & Peisach, J. (1990) Nuclear quadrupole interactions in copper(II)-diethylenetriamine-substituted imid-azole complexes and in copper(II) proteins, J. Am. Chem. Soc. 112, 90359044.
  • Karlsson, B. G., Nordling, M., Pascher, T., Tsai, L.-C., Sjölin, L. & Lundberg, L. G. (1991) Cassette mutagenesis of Met121 in azurin from Pseudomonas aeruginosa, Protein Eng. 4, 343349.
  • Lommen, A., Canters, G. W. & Van Beeumen, J. (1988) A 1H-NMR study on the blue copper protein amicyanin from Thiobacillus versutus, Eur. J. Biochem. 176, 213223.
  • Lowery, M. D. & Solomon, E. I. (1992) Axial ligand bonding in blue copper proteins, Inorg. Chim. Acta 200, 233243.
  • Marcus, R. A. & Sutin, N. (1985) Electron transfer in chemistry and biology, Biochim. Biophys. Acta 811, 265322.
  • McCracken, J., Peisach, J. & Dooley, D. M. (1987) Cu(II) coordination chemistry of amine oxidases: pulsed EPR studies of histidine imidazole, water, and exogenous ligand coordination, J. Am. Chem. Soc. 109, 40644072.
  • Mehler, E. L. & Eichele, G. (1984) Electrostatic effects in water-accessible regions of proteins, Biochemistry 23, 38873891.
  • Mehler, E. L. (1990) Comparison of dielectric response models for simulating electrostatic effects in proteins, Protein Eng. 3, 415417.
  • Mehler, E. L. & Solmajer, T. (1991) Electrostatic effects in proteins: comparison of dielectric and charge models, Protein Eng. 4, 903910.
  • Mims, W. B. (1974) Measurement of the linear electric field effect in EPR using the spin echo method, Rev. Sci. Instrum. 57, 15831591.
  • Mims, W. B. & Peisach, J. (1979) Measurement of 14N superhyperfine frequencies in stellacyanin by an electron spin echo method, J. Biol. Chem. 254, 43214323.
  • Moore, G. R., Pettigrew, G. W. & Rogers, N. K. (1986) Factors influencing redox potentials of electron transfer proteins, Proc. Natl Acad. Sci. USA 83, 49984999.
  • Moore, G. R. & Pettigrew, G. W. (1990) Cytochromes c – evolutionary, structural and physicochemical aspects, Springer Verlag, Berlin .
  • Murphy, L. M., Strange, R. W., Karlsson, B. G., Lundberg, L. G., Pascher, T., Reinhammar, B. & Hasnain, S. S. (1993) Structural characterization of azurin from Pseudomonas aeruginosa and some of its methionine-121 mutants, Biochemistry 32, 19651975.
  • Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G. W. (1991a) X-ray crystal structure of the two site-specific mutants His35Gln and His35Leu of azurin from Pseudomonas aeruginosa, J. Mol. Biol. 218, 427447.
  • Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M. & Canters, G. W. (1991b) Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5. 5 and pH 9. 0. A pH-induced conformational transtition involves a peptide bond flip, J. Mol. Biol. 221, 765772.
  • Nar, H., Huber, R., Messerschmidt, A., Filippou, A. C., Barth, M., Jaquinod, M., van de Kamp, M. & Canters, G. W. (1992) Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin, Eur. J. Biochem. 205, 11231129.
  • Nestor, L., Larrabee, J. A., Woolery, G., Reinhammar, B. & Spiro, T. (1984) Resonance Raman spectra of blue copper proteins: assignments from normal mode calculations and copper-63/copper-65 and H2O/D2O shifts for stellacyanin and laccase, Biochemistry 23, 10841093.
  • Pascher, T., Karlsson, B. G., Nordling, M., Malmström, B. G. & Vänngård, T. (1993) Reduction potentials and their pH dependence in site-directed mutant forms of azurin from Pseudomonas aeruginosa, Eur. J. Biochem., 212, 289296.
  • Peisach, J. & Blumberg, W. E. (1974) Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins, Arch. Biochem. Biophys. 165, 691708.
  • Pettigrew, G. W., Leitch, F. A. & Moore, G. R. (1983) The effect of iron-hexacyanide binding on the determination of redox potentials of cytochromes and copper proteins, Biochim. Biophys. Acta 725, 409416.
  • Pettigrew, G. W. & Moore, G. R. (1987) Cytochromes c – biological aspects, Springer Verlag, Berlin .
  • Rees, D. C. (1985) Electrostatic influence on energetics of electron transfer reactions, Proc. Natl Acad. Sci. USA 82, 30823085.
  • Rodgers, K. K. & Sligar, S. S. (1991) Surface electrostatics, reduction potentials, and the internal dielectric constant of proteins, J. Am. Chem. Soc. 113, 94199421.
  • Romero, A., Hoitink, C. W. G., Nar, H., Huber, R., Messerschmidt, A. & Canters, G. W. (1993) X-ray analysis and spectroscopic characterization of M121Q azurin: a copper site model for stellacyanin, J. Mol. Biol. 229, 10071021.
  • Shadle, S. E., Penner-Hahn, J. E., Schugar, H. J., Hedman, B., Hodgson, K. O. & Solomon, E. I. (1993) X-ray absorption spectroscopic studies of the blue Cu site – metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin, J. Am. Chem. Soc. 115, 767776.
  • Solomon, E. I., Hare, J. W., Dooley, D. M., Dawson, J. H., Stephens, P. J. & Gray, H. B. (1980) Spectroscopic properties of stellacyanin, plastocyanin and azurin. Electronic structure of the blue copper sites, J. Am. Chem. Soc. 102, 168178.
  • Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992) Electronic structures of active sites in copper proteins: contributions to reactivity, Chem. Rev. 92, 521542.
  • St Clair, C. S., Ellis, W. R. & Gray, H. B. (1992) Spectro-electrochemistry of blue copper proteins: pH and temperature dependences of the reduction potentials of five azurins, Inorg. Chim. Acta 191, 149155.
  • Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G. & Fersht, A. R. (1987) Prediction of electrostatic effects of engineering of protein charges, Nature 330, 8688.
  • Sykes, A. G. (1991) Active site properties of the blue copper proteins, Adv. Inorg. Biochem. 36, 377407.
  • Ugurbil, K., Norton, R. S., Allerhand, A. & Bersohn, R. (1977) Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural abundance carbon-13 NMR, Biochemistry 16, 886894.
  • Van de Kamp, M., Floris, R., Hali, F. C. & Canters, G. W. (1990a) Site-directed mutagenesis reveals that the hydrophobic patch of azurin mediates electron transfer, J. Am. Chem. Soc. 112, 907908.
  • Van de Kamp, M., Silvestrini, M. C., Brunori, M., Van Beeumen, J., Hali, F. C. & Canters, G. W. (1990b) Involvement of the hydrophobic patch of azurin in the electron transfer reactions with cytochrome c551 and nitrite reductase, Eur. J. Biochem. 194, 109118.
  • Van de Kamp, M., Hali, F. C., Rosato, N., Finazzi Agro, A. & Canters, G. W. (1990c) Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli, Biochim. Biophys. Acta 1019, 282292.
  • Van de Kamp, M., Canters, G. W., Wijmenga, S. S., Hilbers, C. W., Nar, H., Messerschmidt, A. & Huber, R. (1992) Complete sequential 1H and 15N NMR assignments and solution secondary structure of the blue copper protein azurin from Pseudomonas aeruginosa, Biochemistry 31, 1019410207.
  • Varadarajan, R., Zewert, T. E., Gray, H. B. & Boxer, S. G. (1989) Effects of buried ionizable amino acids on the reduction potential of recombinant myoglobin, Science 243, 6972.
  • Warshel, A. & Russell, S. T. (1984) Calculations of electrostatic interactions in biological systems and in solutions, Q. Rev. Biophys. 17, 283422.