SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. References

The FBP1 and PCK1 genes encode the gluconeogenic enzymes fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, respectively. In the yeast, Saccharomyces cerevisiae, the corresponding mRNAs are present at low levels during growth on glucose, but are present at elevated levels during growth on gluconeogenic carbon sources. We demonstrate that the levels of the FBP1 and PCK1 mRNAs are acutely sensitive to the addition of glucose to the medium and that the levels of these mRNAs decrease rapidly when glucose is added to the medium at a concentration of only 0.005%. At this concentration, glucose blocks FBP1 and PCK1 transcription, but has no effect on iso-1 cytochrome c (CYCI) mRNA levels. Glucose also increases the rate of degradation of the PCK1 mRNA approximately twofold, but only has a slight effect upon FBP1 mRNA turnover. We show that the levels of the FBP1 and PCK1 mRNAs are also sensitive to other environmental factors. The levels of these mRNAs decrease transiently in response to a decrease of the pH from pH 7.5 to pH 6.5 in the medium, or to a mild temperature shock (from 24°C to 36°C). The latter response appears to be mediated by accelerated mRNA decay.

Abbreviations
ACT1

actin gene

CYC1

iso-1 cytochrome c gene

FBP1

fructose-1,6-bisphosphatase gene

PCK1

phosphoenolpyruvate carboxykinase gene

Enzymes
 

Fructose-1,6-bisphosphatase (EC 3.1.3.11)

 

phosphoenolpyruvate carboxykinase (4.1.1.49)

References

  1. Top of page
  2. Abstract
  3. References
  • 1
    Gancedo, C. & Serrano, R. (1989) Energy yielding metabolism, in The yeasts (Rose, A. H. & Harrison, J. S., eds) vol. 3, pp. 205259, Academic Press, New York , London .
  • 2
    Moore, P. A., Sagliocco, F. A., Wood, R. M. C. & Brown, A. J. P. (1991) Yeast glycolytic mRNAs are differentially regulated, Mol. Cell. Biol. 11, 53305337.
  • 3
    de la Guerra, R., Valdes-Hevia, M. D. & Gancedo, J. M. (1988) Regulation of yeast fructose-1,6-bisphosphatase in strains containing multicopy plasmids coding for this enzyme, FEBS Lett. 242, 149152.
  • 4
    Sedivy, J. M. & Fraenkel, D. G. (1985) Fructose bisphosphatase of Saccharomyces cerevisiae. Cloning, disruption and regulation of the FEP1 structural gene, J. Mol. Biol. 186, 307319.
  • 5
    Valdes-Hevia, M. D., de la Guerra, R. & Gancedo, C. (1989) Isolation and characterisation of the gene encoding phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae, FEBS Lett. 258, 313316.
  • 6
    Ito, H., Fukuda, Y. & Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations, J. Bacteriol. 153, 163168.
  • 7
    Feinberg, A. P. & Vogelstein, B. (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity, Anal. Biochem. 132, 613.
  • 8
    Lillehaug, J. R. & Kleppe, K. (1975) Effect of salts and polyamines on T4 polynucleotide kinase, Biochemistry 14, 12251230.
  • 9
    Lindquist, S. (1981) Regulation of protein synthesis during heat shock, Nature 293, 311314.
  • 10
    Herrick, D., Parker, R. & Jacobson, A. (1990) Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae, Mol. Cell. Biol. 10, 22692284.
  • 11
    Santiago, T. C., Purvis, I. J., Bettany, A. J. E. & Brown, A. J. P. (1986) The relationship between mRNA stability and length in Saccharomyces cerevisiae, Nucleic Acids Res. 14, 83478360.
  • 12
    Losson, R. & Lacroute, F. (1979) Interference of nonsense mutations with eukaryotic mRNA stability, Proc. Natl Acad. Sci. USA 76, 51345137.
  • 13
    Lehrach, R. H., Diamond, D., Wozney, J. M. & Boedtker, H. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination, Biochemistry, 16, 47434751.
  • 14
    Thomas, P. S. (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose, Proc. Natl Acad. Sci. USA 77, 52015205.
  • 15
    Herruer, M. H., Mage, W. H., Raue, H. A., Wreken, P., Wilms, E. & Planta, R. J. (1988) Mild temperature shock affects transcription of yeast ribosomal protein genes as well as the stability of their mRNAs, Nucleic Acids Res. 16, 79177929.
  • 16
    Navas, M. A., Cerdan, S. & Gancedo, J. M. (1993) Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose, Proc. Natl Acad. Sci. USA 90, 12901294.
  • 17
    Mercado, J. J., Vincent, O. & Gancedo, J. M. (1991) Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1, FEBS Lett. 291, 97100.
  • 18
    Purvis, I. J., Loughlin, L., Bettany, A. J. E. & Brown, A. J. P. (1987) Translation and stability of an Escherichia coliβ-galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae, Nucleic Acids Res. 15, 79637974.
  • 19
    Mercado, J. J. (1993) Ph. D. thesis, Universidad Autónoma de Madrid.
  • 20
    Mercado, J. J. & Gancedo, J. M. (1992) Regulatory regions in the yeast FBP1 and PCK1 genes, FEBS Lett. 311, 110114.
  • 21
    Niederacher, D., Schüller, H. J., Grzesitza, D., Hauser, H. P., Wagner, T. & Entian, K. D. (1992) Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase, Curr. Genet. 22, 363370.
  • 22
    Nehlin, J. O., Carlberg, M. & Ronne, H. (1992) Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription, Nucleic Acids Res. 20, 52715278.
  • 23
    Lombardo, A., Cereghino, G. P. & Scheffler, I. E. (1992) Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae, Mol. Cell. Biol. 12, 29412948.
  • 24
    Brown, A. J. P. (1989) Messenger RNA stability in yeast, Yeast 5, 239257.
  • 25
    Galego, L., Barahona, I., Alves, A. P., Vreken, P., Raue, H. A., Planta, R. J. & Rodrigues-Pousada, C. (1993) Known heat-shock proteins are not responsible for stress-induced rapid degradation of ribosomal protein mRNAs in yeast, Yeast 9, 583588.
  • 26
    Leeds, P., Wood, J. M., Lee, B. S. & Culbertson, M. R. (1992) Gene products that promote mRNA turnover in Saccharomyces cerevisiae, Mol. Cell. Biol. 12, 21652177.
  • 27
    Sachs, A. B. & Deardoff, J. A. (1992) Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast, Cell 70, 961973.
  • 28
    Muhlrad, D., Decker, C. J. & Parker, R. (1994) Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′[RIGHTWARDS ARROW]3′ digestion of the transcript, Genes & Dev. 8, 855866.
  • 29
    Hemmings, B. A., Zubenko, G. S., Hasilik, A. & Jones, F. W. (1981) Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae, Proc. Natl Acad. Sci. USA 78, 435439.
  • 30
    Parker, R. & Jacobson, A. (1990) Translation and a 42-nucleotide segment within the coding region of the mRNA encoded by the MATαl gene are involved in promoting rapid mRNA decay in yeast, Proc. Natl Acad. Sci. USA 87, 27802784.
  • 31
    Caponigro, G., Muhlrad, D. & Parker, R. (1993) A small segment of the MATαl transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons, Mol. Cell. Biol. 13, 51415148.
  • 32
    Peltz, S. W. & Jacobson, A. (1993) mRNA turnover in Saccharomyces cerevisiae, in Control of mRNA stability (Braweman, G. & Belasco, J., eds) pp. 291328, Academic Press, San Diego .
  • 33
    Brown, A. D., Mackenzie, K. F. & Singh, K. K. (1986) Selected aspects of microbial osmoregulation, FEMS Microbiol. Rev. 39, 3136.
  • 34
    Nonet, M., Scafe, C., Sexton, J. & Young, R. (1987) Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis, Mol. Cell. Biol. 7, 16021611.
  • 35
    Klionsky, D. J., Banta, L. M. & Emr, S. (1988) Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information, Mol. Cell. Biol. 8, 21052116.
  • 36
    Heinisch, J., Ritzel, R. G., von Borstel, R. C., Aguilera, A., Rodicio, R. & Zimmemann, F. K. (1989) The phosphofructokinase genes of yeast evolved from two duplication events, Gene (Amst.) 78, 309321.
  • 37
    Stucka, R., Valdes-Hevia, M. D., Gancedo, C., Schwarzlose, C. & Feldmann, H. (1988) Nucleotide sequence of the phosphoenolpyruvate carboxykinase gene from Saccharomyces cerevisiae, Nucleic Acids Res. 16, 10926.
  • 38
    Bettany, A. J. E., Moore, P. A., Cafferkey, R., Bell, L. D., Goodey, A. R., Carter, B. L. A. & Brown, A. J. P. (1989) 5′-Secondary structure, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast, Yeast 5, 187198.
  • 39
    Fried, H. M. & Warner, J. R. (1981) Cloning of yeast gene for trichodermin resistance and ribosomal protein L3, Proc. Natl Acad. Sci. USA 78, 238242.
  • 40
    Mitra, G. & Warner, J. R. (1984) A yeast ribosomal protein gene whose intron is in the 5′-leader, J. Biol. Chem. 259, 92189224.
  • 41
    Lowry, C. V., Weiss, J. L., Walthall, D. A. & Zitomer, R. S. (1983) Modular sequences mediate oxygen regulation of CYCI and a neighbouring gene in yeast, Proc. Natl Acad. Sci. USA 80, 151155.
  • 42
    Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H. & Wright, F. (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens, a review of the considerable within species diversity, Nucleic Acids Res. 16, 82078211.
  • 43
    Rogers, D. T., Hiller, E., Mitsock, L. & Orr, E. (1988) Characterisation of the gene for fructose-1, 6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe, J. Biol. Chem. 263, 60516057.