1. Top of page
  2. Abstract
  3. References

The very-low-density-lipoprotein receptor (VLDLR) is a recently described lipoprotein receptor that shows considerable similarity to the low-density-lipoprotein receptor (LDLR). This receptor has been suggested to be important for the metabolism of apoprotein-E-containing triacylglycerol-rich lipoproteins, such as very-low-density-lipoprotein (VLDL), β-migrating VLDL and intermediate-density lipoprotein. cDNA clones that code for the VLDLR were isolated from a mouse heart cDNA library. The deduced amino acid sequence predicts a mature protein of 846 amino acids preceded by a 27-residue signal peptide. Three mRNA species for the VLDLR with sizes of 3.9, 4.5 and 7.9 kilobases were present in high concentration in heart and muscle, which utilize triacylglycerols as an energy source. VLDLR mRNA is also detected in decreasing amounts in kidney, brain, ovary, testis, lung and adipose tissue. It is essentially absent in liver and small intestine. The amino acid sequence of the VLDLR is highly conserved among rabbit, human and mouse. VLDLR contains five structural domains very similar to those in LDLR, except that the ligand-binding domain in VLDLR has an eightfold repeat instead of a sevenfold repeat in LDLR. Sequence conservation among animal species is much higher for the VLDLR than the LDLR. Sequences of the VLDLR from three vertebrate species and the LDLR from five vertebrate species were aligned and a phylogenetic tree was reconstructed. Although both receptors contain five domains and share amino acid sequence similarity, our computations showed that they diverged before the divergence between mammals and amphibians. In addition, sequence comparison of both receptor sequences suggests that the rabbit is evolutionarily closer to man than to the mouse. These results are consistent with the hypothesis that the VLDLR and the LDLR have evolved from a common ancestral gene to play distinct roles in lipoprotein metabolism and that the metabolic handling of triacylglycerol by the body via the VLDLR is a highly conserved mechanism.


Very-low-density-lipoprotein receptor


low-density-lipoprotein receptor


very-low-density- lipoprotein




intermediate-density lipoprotein


epidermal growth factor


  1. Top of page
  2. Abstract
  3. References
  • Benson, D., Lipman, D. J. & Ostell, J. (1993) GenBank, Nucleic Acids Res. 21, 29632964.
  • Bishop, R. W. (1992) Structure of the hamster-low-density-lipoprotein receptor gene, J. Lipid Res. 33, 549557.
  • Brown, M. S. & Goldstein, J. L. (1986) A receptor-mediated pathway for cholesterol homeostasis, Science 232, 3447.
  • Chen, W.-J., Goldstein, J. L. & Brown, M. S. (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low-density-lipoprotein receptor, Biol. Chem. 265, 31163123.
  • Choi, S. Y., Fong, L. G., Kirven, M. J. & Cooper, A. D. (1991) Use of an anti-low-density-lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo, J. Clin. Invest. 88, 11731181.
  • Chomczynski, P. & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem. 162, 156159.
  • Davis, C. G., Goldstein, J. L., Südhof, T. C., Anderson, R. G. W., Russell, D. W. & Brown, M. S. (1987). Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor similarity region, Nature 326, 760765.
  • Deitschy, J. M., Turley, S. D. & Spady, D. K. (1993) Role of liver in the maintenance of cholesterol and-low-density-lipoprotein homeostasis in different animal species including humans, J. Lipid Res. 34, 16371659.
  • Esser, V., Limbird, L. E., Brown, M. S., Goldstein, J. L. & Russell, D. W. (1988) Mutational analysis of the ligand binding domain of the low-density-lipoprotein receptor, J. Biol. Chem. 263, 1328213290.
  • Gotto, A. M., Jr, Pownall, H. J. & Havel, R. J. (1986) Introduction to the plasma lipoproteins, Methods Enzymol. 128, 341.
  • Greeve, J., Altkemper, I., Dieterich, J.-H., Greten, H. & Windler, E. (1993) Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic excretion is reflected in low concentrations of apoB-containing plasma lipoproteins, J. Lipid Res. 34, 13671383.
  • Hoffer, J. J. V., van Eck, M. M., Petrij, F., Van der Zee, A., de Wit, E., Meijer, D., Grosveld, G., Havekes, L. M., Hofker, M. H. & Frants, R. R. (1993) The mouse low-density-lipoprotein receptor gene: cDNA sequence and exon-intron structure, Biochem. Biophys. Res. Commun. 191, 880886.
  • Hussain, M. M., Maxfield, F. R., Más-Oliva, J., Tabas, I., Ji, Z.-S., Innerarity, T. L. & Mahley, R. W. (1991) Clearance of chylomicron remnants by the low-density-lipoprotein receptor-related protein/α2-macroglobulin receptor, J. Biol. Chem. 266, 1393613940.
  • Innerarity, T. L. & Mahley, R. W. (1978) Enhanced binding by cultured human fibroblasts of apoprotein-E-containing lipoproteins as compared with-low-density-lipoprotein, Biochemistry 17, 14401447.
  • Ishibashi, S., Brown, M. S., Goldstein, J. L., Gerard, R. D., Hammer, R. E. & Herz, J. (1993) Hypercholesterolemia in-low-density-lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J. Clin. Invest. 92, 883893.
  • Jäckle, S., Rinninger, F., Greeve, J., Greten, H. & Windler, E. (1992) Regulation of the hepatic removal of chylomicron remnants and β-very-low-density-lipoproteins in the rat, J. Lipid Res. 33, 419429.
  • Kimura, M. (1983) The neutral theory of molecular evolution, Cambridge University Press, Cambridge , New York .
  • Kroczek, R. A. (1989) Immediate visualization of blotted RNA in Northern analysis, Nucl. Acids Res. 17, 9497.
  • Lee, L. Y., Mohler, W. A., Schafer, B. S., Frendenberger, J. S., Byrne-Connolly, N., Eager, K. B., Mosley, S. T., Leighton, J. K., Thrift, R. N., Davis, R. A. & Tanaka, R. D. (1989) Nucleotide sequence of the rat-low-density-lipoprotein receptor cDNA, Nucleic Acids Res. 17, 12591260.
  • Lindgren, V., Luskey, J. L., Russell, D. W. & Francke, U. (1985) Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes, Proc. Natl Acad. Sci. USA 82, 85678571.
  • Mamo, J. C. L., Bowler, A., Elsegood, C. L. & Redgrave, T. G. (1991) Defective plasma clearance of chylomicron-like lipid emulsions in Watanabe heritable hyperlipidemic rabbits, Biochim. Biophys. Acta 108, 241245.
  • Mehta, K. D., Chen, W.-J., Goldstein, J. L. & Brown, M. S. (1991) The low density lipoprotein receptor in Xenopus laevis. I. Five domains that resemble the human receptor, J. Biol. Chem. 266, 1040610414.
  • Oka, K., Tzung, K.-W., Sullivan, M., Lindsay, E., Baldini, A. & Chan, L. (1994) Human very-low-density lipoprotein receptor complementary DNA and deduced amino acid sequence and localization of its gene (VLDLR) to chromosome band 9p24 by fluorescence in situ hybridization, Genomics 20, 298300.
  • Polvino, W. J., Dichek, D. A., Mason, J. & Anderson, W. F. (1992) Molecular cloning and nucleotide sequence of cDNA encoding a functional murine low-density-lipoprotein receptor, Somatic Cell. Mol. Genet. 18, 443450.
  • Russell, D. W., Brown, M. S. & Goldstein, J. L. (1989). Different combinations of cysteine-rich repeats mediate binding of-low-density-lipoprotein receptor to two different proteins, J. Biol. Chem. 264, 2168221688.
  • Russell, D. W., Schneider, W. J., Yamamoto, T., Luskey, K. L., Brown, B. S. & Goldstein, J. L. (1984) Domain map of the LDL receptor: sequence similarity with the epidermal growth factor precursor, Cell 35, 577585.
  • Saitou, N. & Nei, M. (1987) the neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4, 406425.
  • Sakai, J., Hoshino, A., Takahashi, S., Miura, Y., Ishi, H., Suzuki, H., Kawarabayashi, Y. & Yamamoto, T. (1994) Structure, chromosome location, and expression of the human very-low-density-lipoprotein receptor gene, J. Biol. Chem. 269, 21732182.
  • Südhof, T. C., Goldstein, J. L., Brown, M. S. & Russell, D. W. (1985) The LDL receptor gene: a mosaic of exons shared with different proteins, Science 228, 815822.
  • Takahashi, S., Kawarabayasi, Y., Nakai, T., Sakai, J. & Yamamoto, T. (1992) Rabbit very-low-density-lipoprotein receptor: A-low-density-lipoprotein receptor-like protein with distinct ligand specificity, Proc. Natl Acad. Sci. USA 89, 92529256.
  • Yamada, N., Shames, D. M. & Havel, R. J. (1987) Effect of-low-density-lipoprotein receptor deficiency on the metabolism of apolipoprotein B-100 in blood plasma, J. Clin. Invest. 80, 507515.
  • Yamada, N., Shames, D. M., Takahashi, K. & Havel, R. J. (1988) Metabolism of apolipoprotein B-100 in large very-low-density-lipoproteins of blood plasma. Kinetic studies in normal and Watanabe heritable hyperlipidemic rabbits, J. Clin. Invest. 82, 21062113.
  • Yamamoto, T., Bishop, R. W., Brown, M. S., Goldstein, J. L. & Russell, D. W. (1986) Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit, Science 232, 12301237.
  • Yamamoto, T., Davis, C. G., Brown, M. S., Schneider, W. J., Casey, M. L., Goldstein, J. L. & Russell, D. W. (1984). The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA, Cell 39, 2738.
  • Young, J. Z. (1981) The life of vertebrates, 3rd edn, Clarendon Press, Oxford , UK .
  • Zharkikh, A. A., Rzhetsky, A. Yu., Morosov, P. S., Sitnikova, T. L. & Krushkal, J. S. (1991) VOSTORG: a package of microcomputer programs for sequence analysis and construction of phylogenetic trees. Gene (Amst.) 101, 251254.