1. Top of page
  2. Abstract

The Saccharomyces cerevisiae PGM1 and PGM2 genes encoding two phosphoglucomutase isoenzymes have been isolated and sequenced. The drived protein sequences are closely related to one another and show distinct sequence similarities to the human and rabbit phosphoglucomutases, especially in the region supposed to constitute the active site. PGM1 and PGM2 are located on chromosomes XI and XIII, respectively, just upstream of the known genes YPK1 and YKR2 coding for a pair of closely related putative protein kinases. These observations suggest that an extended region of DNA arose by the process of gene duplication. Cells deleted for both, PGM1 and PGM2, could not grow on galactose. No residual phosphoglucomutase activity could be measured in crude extracts or in permeabilized cells of pgm1/2 double mutants. Unexpectedly, growth with glucose was not impaired and mutant cells were still able to accumulate trehalose and glycogen, although at a reduced level. Two further genes could be isolated and characterized which when over-expressed on a multi-copy plasmid could restore growth on galactose of the pgm1/2 double deletion mutant. Multi-copy complementation was due to a sharply increased level of phosphoglucomutase activity. Partial sequencing and characterization of the two genes revealed one of them to be SEC53 encoding phosphomannomutase. No extended sequence similarities could be found in the databases for the second gene. However, part of the derived amino acid sequence contained a region of high similarity to the active-site consensus sequence of hexosephosphate mutases from different organism. Further investigations suggest that a complex network of mutases exist in yeast which interact and can partially substitute for each other.




Phosphoglucomutase (EC


phosphoglucose isomerase (EC


phosphomannomutase (EC


phosphomannose isomerase (EC


pyruvate decarboxylase (EC


fructose-1,6-bisphosphatase (EC


glucose-6-phosphate dehydrogenase (EC


  1. Top of page
  2. Abstract
  • Algranati, I. D. & Cabib, E. (1962) Uridine diphosphate d-glucoseglycogen glucosyltransferse from yeast, J. Biol. Chem. 237, 10071013.
  • Ballou, C. E. (1982) Yeast cell wall and cell surface, in The molecular biology of the yeast Saccharomyces. Metabolism and gene expression (Strathern, J. N., Jones, E. W. & Broach, J. R., eds) vol. 2, pp. 335360, Cold Spring Harbor Laboratroy Press, Cold Spring Harbor , New York .
  • Bell, W., Klassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., van der Zee, P. & Wiemken, A. (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation, Eur. J. Biochem. 209, 951959.
  • Bennetzen, J. L. & Hall, B. D. (1982) Codon selection in yeast, J. Biol. Chem. 257, 30263031.
  • Bergmeyer, H. U. (1974) Methoden der enzymatischen Analyse, Verlag Chemie, Weinheim .
  • Bernstein, M., Hoffmann, W., Ammerer, G. & Schekman, R. (1985) Characterization of a gene product (SEC53p) required for protein assembly in the yeast endoplasmic reticulum, J. Cell Biol. 101, 23742382.
  • Bevan, P. & Douglas, H. C. (1969) Genetic control of phosphoglucomutase variants in Saccharomyces cerevisiae, J. Bacteriol. 98, 532535.
  • Biely, P., Kratky, Z., Kovarik, J. & Bauer, S. (1971) Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition, J. Bacteriol. 107, 121129.
  • Blázquez, M. A., Lagunas, R., Gancedo, J. M. & Gancedo, C. (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinase, FEBS Lett. 329, 5154.
  • Boles, E., Heinisch, J. & Zimmermann, F. K. (1993a) Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae, Yeast 9, 761770.
  • Boles, E., Lehnert, W. & Zimmermann, F. K. (1993b) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant, Eur. J. Biochem. 217, 469477.
  • Boles, E. & Zimmermann, F. K. (1993a) Saccharomyces cerevisiae phosphoglucose isomerrase and fructose bisphophate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster, Curr. Genet. 23, 187191.
  • Boles, E. & Zimmermann, F. K. (1993b) Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolities, Arch. Microbiol. 160, 324328.
  • Breitenbach-Schmitt, I., Schmitt, H. D., Heinisch, J. & Zimmermann, F. K. (1984) Genetic and phgysiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence, Mol. & Gen. Genet. 195, 536540.
  • Chen, P., Lee, K. S. & Levin, D. E. (1993) A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae, Mol. & Gen. Genet. 236, 443447.
  • Ciriacy, M. & Breitenbach, I. (1979) Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae, J. Bacteriol. 139, 152160.
  • Clarke, L. & Carbon, J. (1976) A colony bank containing synthetic Col E1 hybrid plasmids representative of the entire E. coli genome, Cell 9, 9199.
  • Daugherty, J. P., Kraemer, W. F. & Joshi, J. G. (1975) Purification and propertis of phosphoglucomutase from Fleischmann's yest, Eur. J. Biochem. 57, 115126.
  • Feldman, R. I., Bernstein, M. & Schekman, R. (1987) Product of SEC53 is required for folding and glycosylation of secretory proteins in the lumen of the yeast endoplasmic reticulum, J. Biol. Chem. 262, 93329339.
  • Ferro-Novick, S., Novick, P., Field, C. & Shekman, R. (1984a) Yeast secretory mutants that block the formation of active cell surface enzymes, J. Cell Biol. 98, 3543.
  • Ferro-Novick, S., Hansen, W., Schauer, I. & Schekman, R. (1984b) Genes required for completion of import of proteins into the endoplasmic reticulum in yeast, J. Cell Biol. 98, 4453.
  • Gancedo, C. & Serrano, R. (1989) Energy-yielding metabolism, in The yeast (Rose, A. H. & Harrison, J. S., eds) vol. 3, pp. 205259, 2nd edn, Academic Press, New York .
  • Gietz, R. D. & Sugino, A. (1988) New Yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene (Amst.) 74, 527534.
  • Gonzáles, M. I., Stucka, R., Blázquez, M. A., Feldmann, H. & Gancedo, C. (1992) Molecular cloning of CIF1, a yeast gene necessary for growth on glucose, Yeast 8, 183192.
  • Griggs, D. W. & Johnston, M. (1991) Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl Acad. Sci USA 88, 85978601.
  • Guthrie, C. & Fink, G. R. (1991) Guide to yeast genetics and molecular biology, Methods Enzymol. 194, Academic Press, San Diego .
  • Hohmann, S., Neves, M. J., de Koning, W., Alijo, R., Ramos, J. & Thevelein, J. M. (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII, Curr. Genet. 23, 281289.
  • Hottiger, T., Schmutz, P. & Wiemken, A. (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae, J. Bacteriol. 169, 55185522.
  • Hottiger, T., de Virgilio, C., Bell, W., Boller, T. & Wiemken, A. (1992) The 70-kilodalton heat-shock proteins of the SSa subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yest, Saccharomyces cerevisiae, Eur. J. Biochem. 210, 125132.
  • Huffaker, T. C. & Robbins, P. W. (1983) Yeast mutants dificient in protein glycosylation, Proc. Natl Acad. Sci. USA 80, 74667470.
  • Jiang, X. M., Neal, B. L., Santiago, F. S., Lee, S. J., Romana, L. K. & Reeves, P. R. (1991) Structure and sequence of the rfb (O antigen) gene cluster of Salmonella typhimurium (strain LT2), Mol. Microbiol. 5, 695713.
  • Johnson, B. F. (1968) Lysis of yeast cell walls induced by 2-deoxyglucose at their sites of glucan synthesis, J. Bacteriol. 95, 11691172.
  • Johnston, M. (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae, Microbiol. Rev. 51, 458476.
  • Joshi, J. G. (1982) Phosphoglucomutse from yeast, Methods Enzymol. 89, 599605.
  • Kepes, F. & Schekman, R. (1988) The yeast SEC53 gene encodes phosphomannomutase, J. Biol. Chem. 263, 91559161.
  • Köplin, R., Arnold, W., Hötte, B., Simon, R., Wang, G. & Pühler, A. (1992) Genetics of xanthan production in Xanthomonas compestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis, J. Bacteriol. 174, 191199.
  • Kubo, K., Ohno, S., Matsumoto, S., Yahara, I. & Suzuki, K. (1989) A novel yeast gene coding for a putative protein kinase, Gene (Amst.) 76, 177180.
  • Lillie, S. H. & Pringle, J. R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation, J. Bacteriol. 143, 13841394.
  • Marchase, R. B., Bounelis, P., Brumley, L. M., Dey, N., Browne, B., Auger, D., Fritz, T. A., Kulesza, P. & Bedwell, D. M. (1993) Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a glc-phosphotransferase, J. Biol. Chem. 268, 83418349.
  • Maurer, R. A. (1988) Isolation of a yeast protein kinase gene by screening with a mammalian protein kinase cDNA, DNA (NY) 7, 469474.
  • Nehlin, J. O., Carlberg, M. & Ronne, H. (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response, EMBO J. 10, 33733377.
  • Oh, D, & Hopper, J. E. (1990) Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible, Mol. Cell. Biol. 10, 14151422.
  • Ray, W. J., Hermodson, M. A., Puvathingal, J. M. & Mahoney, W. C. (1983) The complete amino acid sequence of rabbit muscle phosphoglucomutase, J. Biol. Chem. 258, 91669174.
  • Ray, W. J. Jr. & Peck, E. J. Jr (1972) Phosphoglucomutase, in The enzymes, (Boyer, P. D., ed) 3rd edn, vol. 6, pp. 407477, Academic Press, New York .
  • Rothstein, R. J. (1983) One step gene disruption in yeast, Methods Enzymol. 101, 202211.
  • Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor , New York .
  • Sanger, F., Nicklen, S. & Coulson, A. R. (1977) DNA-sequencing with chain-terminating inhibitors, Proc. Natl Acad. Sci. USA 74, 54635467.
  • Schiestl, R. H., & Gietz, R. D. (1989) High efficiency transformation of intact yeast cells by single stranded nucleic acids as carrier, Curr. Genet. 16, 339346.
  • Smith, D. J., Cooper, M., DeTiani, M., Losberger, C. & Payton, M. A. (1992) The Candida albicans PMM1 gene encoding phosphomannomutase complements a Saccharomyces cerevisiae sec53-6 mutation, Curr. Genet. 22, 501503.
  • Stevenson, G., Lee, S. J., Romana, L. K. & Reeves, P. R. (1991) The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster, Mol. & Gen. Genet. 227, 173180.
  • Strathmann, M., Hamilton, B. A., Mayeda, C. A., Simon, M. I., Meyerowitz, E. M. & Palazzolo, M. J. (1991) Transposon-facilitated DNA sequencing, Proc. Natl Acad. Sci. USA 88, 12471250.
  • Struhl, K. (1986) Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms, Mol. Cell. Biol. 6, 38473853.
  • Tajima, M., Nogi, Y. & Fukasawa, T. (1986) Duplicate upstream activating sequnces in the promoter region of the Saccharomyces cerevisiae GAL7 gene, Mol. Cell. Biol. 6, 246256.
  • Tanner, W. & Lehle, L. (1987) Protein glycosylation in yest, Biochim. Biophys. Acta 906, 8199.
  • Tosi, A. & Douglas, H. C. (1964) The effect of mutation on two forms of phosphoglucomutase in Saccharomyces, Biochim. Biophys. Acta 92, 513520.
  • Van Aelst, L., Hohman, S., Zimmermann, F. K., Jans, A. W. H. & Thevelein, J. M. (1991) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Sacchromyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling, EMBO J. 10, 20952104.
  • Van Aelst, L., Hohmann, S., Bulaya, B., de Koning, W., Sierkstra, L., Neves, M. J., Luyten, K., Alijo, R., Ramos, J., Cocetti, P., Martegani, E., de Magelhaes-Rocha, N. M., Brandao, R. L., Van Dijk, P., Vanhalewyn, M., Durnez, P., Jans, A. W. H. & Thevelein, J. M. (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae, Mol. Microbiol. 8, 927943.
  • Van de Poll, K. W., Kerkenaar, A. & Schamhart, D. H. J. (1974) Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis, J. Bacteriol. 117, 965970.
  • West, R. W., Yocum, R. R. & Ptashne, M. (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG, Mol. Cell. Biol. 4, 24672478.
  • Whitehouse, D. B., Putt, W., Lovegrove, J. U., Morrison, K., Hollyoake, M., Fox, M. F., Hopkinson, D. A. & Edwards, Y. H. (1992) Phosphoglucomutase 1: complete human and rabbit mRNA sequences and direct mapping of this highly polymorphic marker on human chromosome 1, Proc. Natl Acad. Sci. USA 89, 411415.
  • Zamenhoff, S. (1957) Preparation and assay of deoxyribonucleic acids from animal tissue, Methods Enzymol. 3, 696704.
  • Zaret, K. S. & Sherman, F. (1982) DNA sequence required for efficient trascription termination in yeast, Cell 28, 563573.
  • Zielinski, N. A., Chakrabarty, A. M. & Berry, A. (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase, J. Biol. Chem. 266, 97549763.