SEARCH

SEARCH BY CITATION

REFERENCES

  • Algranati, I. D. & Cabib, E. (1962) Uridine diphosphate d-glucoseglycogen glucosyltransferse from yeast, J. Biol. Chem. 237, 10071013.
  • Ballou, C. E. (1982) Yeast cell wall and cell surface, in The molecular biology of the yeast Saccharomyces. Metabolism and gene expression (Strathern, J. N., Jones, E. W. & Broach, J. R., eds) vol. 2, pp. 335360, Cold Spring Harbor Laboratroy Press, Cold Spring Harbor , New York .
  • Bell, W., Klassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., van der Zee, P. & Wiemken, A. (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation, Eur. J. Biochem. 209, 951959.
  • Bennetzen, J. L. & Hall, B. D. (1982) Codon selection in yeast, J. Biol. Chem. 257, 30263031.
  • Bergmeyer, H. U. (1974) Methoden der enzymatischen Analyse, Verlag Chemie, Weinheim .
  • Bernstein, M., Hoffmann, W., Ammerer, G. & Schekman, R. (1985) Characterization of a gene product (SEC53p) required for protein assembly in the yeast endoplasmic reticulum, J. Cell Biol. 101, 23742382.
  • Bevan, P. & Douglas, H. C. (1969) Genetic control of phosphoglucomutase variants in Saccharomyces cerevisiae, J. Bacteriol. 98, 532535.
  • Biely, P., Kratky, Z., Kovarik, J. & Bauer, S. (1971) Effect of 2-deoxyglucose on cell wall formation in Saccharomyces cerevisiae and its relation to cell growth inhibition, J. Bacteriol. 107, 121129.
  • Blázquez, M. A., Lagunas, R., Gancedo, J. M. & Gancedo, C. (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinase, FEBS Lett. 329, 5154.
  • Boles, E., Heinisch, J. & Zimmermann, F. K. (1993a) Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae, Yeast 9, 761770.
  • Boles, E., Lehnert, W. & Zimmermann, F. K. (1993b) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant, Eur. J. Biochem. 217, 469477.
  • Boles, E. & Zimmermann, F. K. (1993a) Saccharomyces cerevisiae phosphoglucose isomerrase and fructose bisphophate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster, Curr. Genet. 23, 187191.
  • Boles, E. & Zimmermann, F. K. (1993b) Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolities, Arch. Microbiol. 160, 324328.
  • Breitenbach-Schmitt, I., Schmitt, H. D., Heinisch, J. & Zimmermann, F. K. (1984) Genetic and phgysiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence, Mol. & Gen. Genet. 195, 536540.
  • Chen, P., Lee, K. S. & Levin, D. E. (1993) A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae, Mol. & Gen. Genet. 236, 443447.
  • Ciriacy, M. & Breitenbach, I. (1979) Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae, J. Bacteriol. 139, 152160.
  • Clarke, L. & Carbon, J. (1976) A colony bank containing synthetic Col E1 hybrid plasmids representative of the entire E. coli genome, Cell 9, 9199.
  • Daugherty, J. P., Kraemer, W. F. & Joshi, J. G. (1975) Purification and propertis of phosphoglucomutase from Fleischmann's yest, Eur. J. Biochem. 57, 115126.
  • Feldman, R. I., Bernstein, M. & Schekman, R. (1987) Product of SEC53 is required for folding and glycosylation of secretory proteins in the lumen of the yeast endoplasmic reticulum, J. Biol. Chem. 262, 93329339.
  • Ferro-Novick, S., Novick, P., Field, C. & Shekman, R. (1984a) Yeast secretory mutants that block the formation of active cell surface enzymes, J. Cell Biol. 98, 3543.
  • Ferro-Novick, S., Hansen, W., Schauer, I. & Schekman, R. (1984b) Genes required for completion of import of proteins into the endoplasmic reticulum in yeast, J. Cell Biol. 98, 4453.
  • Gancedo, C. & Serrano, R. (1989) Energy-yielding metabolism, in The yeast (Rose, A. H. & Harrison, J. S., eds) vol. 3, pp. 205259, 2nd edn, Academic Press, New York .
  • Gietz, R. D. & Sugino, A. (1988) New Yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene (Amst.) 74, 527534.
  • Gonzáles, M. I., Stucka, R., Blázquez, M. A., Feldmann, H. & Gancedo, C. (1992) Molecular cloning of CIF1, a yeast gene necessary for growth on glucose, Yeast 8, 183192.
  • Griggs, D. W. & Johnston, M. (1991) Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl Acad. Sci USA 88, 85978601.
  • Guthrie, C. & Fink, G. R. (1991) Guide to yeast genetics and molecular biology, Methods Enzymol. 194, Academic Press, San Diego .
  • Hohmann, S., Neves, M. J., de Koning, W., Alijo, R., Ramos, J. & Thevelein, J. M. (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII, Curr. Genet. 23, 281289.
  • Hottiger, T., Schmutz, P. & Wiemken, A. (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae, J. Bacteriol. 169, 55185522.
  • Hottiger, T., de Virgilio, C., Bell, W., Boller, T. & Wiemken, A. (1992) The 70-kilodalton heat-shock proteins of the SSa subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yest, Saccharomyces cerevisiae, Eur. J. Biochem. 210, 125132.
  • Huffaker, T. C. & Robbins, P. W. (1983) Yeast mutants dificient in protein glycosylation, Proc. Natl Acad. Sci. USA 80, 74667470.
  • Jiang, X. M., Neal, B. L., Santiago, F. S., Lee, S. J., Romana, L. K. & Reeves, P. R. (1991) Structure and sequence of the rfb (O antigen) gene cluster of Salmonella typhimurium (strain LT2), Mol. Microbiol. 5, 695713.
  • Johnson, B. F. (1968) Lysis of yeast cell walls induced by 2-deoxyglucose at their sites of glucan synthesis, J. Bacteriol. 95, 11691172.
  • Johnston, M. (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae, Microbiol. Rev. 51, 458476.
  • Joshi, J. G. (1982) Phosphoglucomutse from yeast, Methods Enzymol. 89, 599605.
  • Kepes, F. & Schekman, R. (1988) The yeast SEC53 gene encodes phosphomannomutase, J. Biol. Chem. 263, 91559161.
  • Köplin, R., Arnold, W., Hötte, B., Simon, R., Wang, G. & Pühler, A. (1992) Genetics of xanthan production in Xanthomonas compestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis, J. Bacteriol. 174, 191199.
  • Kubo, K., Ohno, S., Matsumoto, S., Yahara, I. & Suzuki, K. (1989) A novel yeast gene coding for a putative protein kinase, Gene (Amst.) 76, 177180.
  • Lillie, S. H. & Pringle, J. R. (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation, J. Bacteriol. 143, 13841394.
  • Marchase, R. B., Bounelis, P., Brumley, L. M., Dey, N., Browne, B., Auger, D., Fritz, T. A., Kulesza, P. & Bedwell, D. M. (1993) Phosphoglucomutase in Saccharomyces cerevisiae is a cytoplasmic glycoprotein and the acceptor for a glc-phosphotransferase, J. Biol. Chem. 268, 83418349.
  • Maurer, R. A. (1988) Isolation of a yeast protein kinase gene by screening with a mammalian protein kinase cDNA, DNA (NY) 7, 469474.
  • Nehlin, J. O., Carlberg, M. & Ronne, H. (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response, EMBO J. 10, 33733377.
  • Oh, D, & Hopper, J. E. (1990) Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible, Mol. Cell. Biol. 10, 14151422.
  • Ray, W. J., Hermodson, M. A., Puvathingal, J. M. & Mahoney, W. C. (1983) The complete amino acid sequence of rabbit muscle phosphoglucomutase, J. Biol. Chem. 258, 91669174.
  • Ray, W. J. Jr. & Peck, E. J. Jr (1972) Phosphoglucomutase, in The enzymes, (Boyer, P. D., ed) 3rd edn, vol. 6, pp. 407477, Academic Press, New York .
  • Rothstein, R. J. (1983) One step gene disruption in yeast, Methods Enzymol. 101, 202211.
  • Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor , New York .
  • Sanger, F., Nicklen, S. & Coulson, A. R. (1977) DNA-sequencing with chain-terminating inhibitors, Proc. Natl Acad. Sci. USA 74, 54635467.
  • Schiestl, R. H., & Gietz, R. D. (1989) High efficiency transformation of intact yeast cells by single stranded nucleic acids as carrier, Curr. Genet. 16, 339346.
  • Smith, D. J., Cooper, M., DeTiani, M., Losberger, C. & Payton, M. A. (1992) The Candida albicans PMM1 gene encoding phosphomannomutase complements a Saccharomyces cerevisiae sec53-6 mutation, Curr. Genet. 22, 501503.
  • Stevenson, G., Lee, S. J., Romana, L. K. & Reeves, P. R. (1991) The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster, Mol. & Gen. Genet. 227, 173180.
  • Strathmann, M., Hamilton, B. A., Mayeda, C. A., Simon, M. I., Meyerowitz, E. M. & Palazzolo, M. J. (1991) Transposon-facilitated DNA sequencing, Proc. Natl Acad. Sci. USA 88, 12471250.
  • Struhl, K. (1986) Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms, Mol. Cell. Biol. 6, 38473853.
  • Tajima, M., Nogi, Y. & Fukasawa, T. (1986) Duplicate upstream activating sequnces in the promoter region of the Saccharomyces cerevisiae GAL7 gene, Mol. Cell. Biol. 6, 246256.
  • Tanner, W. & Lehle, L. (1987) Protein glycosylation in yest, Biochim. Biophys. Acta 906, 8199.
  • Tosi, A. & Douglas, H. C. (1964) The effect of mutation on two forms of phosphoglucomutase in Saccharomyces, Biochim. Biophys. Acta 92, 513520.
  • Van Aelst, L., Hohman, S., Zimmermann, F. K., Jans, A. W. H. & Thevelein, J. M. (1991) A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Sacchromyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling, EMBO J. 10, 20952104.
  • Van Aelst, L., Hohmann, S., Bulaya, B., de Koning, W., Sierkstra, L., Neves, M. J., Luyten, K., Alijo, R., Ramos, J., Cocetti, P., Martegani, E., de Magelhaes-Rocha, N. M., Brandao, R. L., Van Dijk, P., Vanhalewyn, M., Durnez, P., Jans, A. W. H. & Thevelein, J. M. (1993) Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae, Mol. Microbiol. 8, 927943.
  • Van de Poll, K. W., Kerkenaar, A. & Schamhart, D. H. J. (1974) Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis, J. Bacteriol. 117, 965970.
  • West, R. W., Yocum, R. R. & Ptashne, M. (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG, Mol. Cell. Biol. 4, 24672478.
  • Whitehouse, D. B., Putt, W., Lovegrove, J. U., Morrison, K., Hollyoake, M., Fox, M. F., Hopkinson, D. A. & Edwards, Y. H. (1992) Phosphoglucomutase 1: complete human and rabbit mRNA sequences and direct mapping of this highly polymorphic marker on human chromosome 1, Proc. Natl Acad. Sci. USA 89, 411415.
  • Zamenhoff, S. (1957) Preparation and assay of deoxyribonucleic acids from animal tissue, Methods Enzymol. 3, 696704.
  • Zaret, K. S. & Sherman, F. (1982) DNA sequence required for efficient trascription termination in yeast, Cell 28, 563573.
  • Zielinski, N. A., Chakrabarty, A. M. & Berry, A. (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase, J. Biol. Chem. 266, 97549763.