1. Top of page
  2. Abstract

Oceans not only cover the major part of the earth's surface but also reach into depths exceeding the height of the Mt Everest. They are populated down to the deepest levels (∼11 800 m), which means that a significant proportion of the global biosphere is exposed to pressures of up to 120 MPa. Although this fact has been known for more than a century, the ecology of the ‘abyss” is still in its infancy. Only recently, barophilic adaptation, i.e. the requirement of elevated pressure for viability, has been firmly established. In non-adapted organisms, increased pressure leads to morphological anomalies or growth inhibition, and ultimately to cell death. The detailed molecular mechanism of the underlying ‘metabolic dislocation' is unresolved.

Effects of pressure as a variable in microbiology, biochemistry and biotechnology allow the structure/function relationship of proteins and protein conjugates to be analyzed. In this context, stabilization by cofactors or accessory proteins has been observed. High-pressure equipment available today allows the comprehensive characterization of the behaviour of proteins under pressure. Single-chain proteins undergo pressure-induced denaturation in the 100-MPa range, which, in the case of oligomeric proteins or protein assemblies, is preceded by dissociation at lower pressure. The effects may be ascribed to the positive reaction volumes connected with the formation of hydrophobic and ionic interactions. In addition, the possibility of conformational effects exerted by moderate, non-denaturing pressures, and related to the intrinsic compressibility of proteins, is discussed. Crystallization may serve as a model reaction of protein self-organization. Kinetic aspects of its pressure-induced inhibition can be described by a model based on the Oosawa theory of molecular association. Barosensitivity is known to be correlated with the pressure-induced inhibition of protein biosynthesis. Attempts to track down the ultimate cause in the dissociation of ribosomes have revealed remarkable stabilization of functional complexes under pseudo-physiological conditions, with the post-translational complex as the most pressure-sensitive species. Apart from the key issue of barosensitivity and barophilic adaptation, high-pressure biochemistry may provide means to develop new approaches to nonthermic industrial processes, especially in the field of food technology.

N, D, M

and M* native, denatured, monomeric, and unfolded monomeric states


critical pressure


critical temperature


tobacco mosaic virus


velocity of sound

ΔV and inline image

reaction and activation volumes


adiabatic compressibility


  1. Top of page
  2. Abstract
  • Ataka, M. & Asai, M. (1990) Analysis of the nucleation and crystal growth kinetics of lysozyme by a theory of self-assembly, Biophys. J. 58, 807811.
  • Balny, C., Masson, P. & Travers, F. (1989) Some recent aspects of the use of high-pressure for protein investigations in solution, High Pressure Res. 2, 128.
  • Balny, C., Hayashi, R., Heremans, K. & Masson, P., (eds) (1992) High pressure and biotechnology, Colloq. Inserm 224.
  • Bartetzko, A. & Nierhaus, K. H. (1988) Mg2+/NH4+/Polyamine system for polyuridine-dependent polyphenylalanine synthesis with near in vivo characteristics, Methods Enzymol. 164, 650658.
  • Bartlett, D., Wright, M., Yayanos, A. A. & Silverman, M. (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium, Nature 342, 572574.
  • Behan, M. K., Macdonald, A. G., Jones, G. R. & Cossins, A. R. (1992) Homoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish, Biochim. Biophys. Acta 1103, 317323.
  • Bernhardt, G., Lüdemann, H.-D. & Jaenicke, R. (1984) Biomolecules are unstable under “black smoker” conditions, Naturwissenschaften 71, 583585.
  • Bernhardt, G., Jaenicke, R. & Lüdemann, H.-D. (1987) High-pressure equipment for growing methanogenic microorganisms on gaseous substrates at high temperature, Appl. Environ. Microbiol. 53, 18761879.
  • Bernhardt, G., Distèche, A., Jaenicke, R., Koch, B., Lüdemann, H.-D. & Stetter, K. O. (1988a) Effect of carbon dioxide and hydrostatic pressure on the pH of culture media and the growth of methanogens at elevated temperature, Appl. Microbiol. Biotechnol. 28, 176181.
  • Bernhardt, G., Jaenicke, R., Lüdemann, H.-D., König, H. & Stetter, K. O. (1988b) High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range, Appl. Environ. Microbiol. 54, 12581261.
  • Brandts, J. F., Oliveira, R. J. & Westort, C. (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A, Biochemistry 9, 10381047.
  • Bridgman, P. W. (1914) The coagulation of albumen by pressure, J. Biol. Chem. 19, 511512.
  • Butz, P., Greulich, K. O. & Ludwig, H. (1988) Volume changes during enzyme reactions: indications of enzyme pulsation during fumarase catalysis, Biochemistry 27, 15561563.
  • Certes, A. (1884a) Sur la culture, à l'abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman, Compt. Rend. 98, 690693.
  • Certes, A. (1884b) De l'action des hautes pressions sur les phénomènes de la putréfaction et sur la vitalité des micro-organismes d'eau douce et d'eau de mer, Compt. Rend. 99, 385388.
  • Cléry, C. & Masson, P. (1992) High pressure and biotechnology, Colloq. Inserm 224, 533535.
  • Cossins, A. R. & Macdonald, A. G. (1986) Homeoviscous adaptation under pressure. III. The fatty acid composition of liver mitochondrial phospholipids of deep-sea fish, Biochim. Biophys. Acta 860, 325335.
  • Cossins, A. R. & Macdonald, A. G. (1989) The adaptation of biological membranes to temperature and pressure: fish from the deep and cold, J. Bioenerg. Biomembr. 21, 115135.
  • Davis, B. J. & Siebenaller, J. F. (1992) Proteolysis at pressure and HPLC peptide mapping of M4-LDH homologs from marine fishes living at different depths, Int. J. Biochem. 24, 11351139.
  • Deming, J. W., Somers, L. K., Straube, W. L., Swartz, D. G. & MacDonell, M. T. (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov., System. Appl. Microbiol. 10, 152160.
  • Dietz, A. S. & Yayanos, A. A. (1978) Silica gel media for isolating and studying bacteria under hydrostatic pressure, Appl. Environ. Microbiol. 36, 966968.
  • Dill, K. A. (1990) Dominant forces in protein folding, Biochemistry 29, 71337155.
  • Di Primo, C., Hui Bon Hoa, G., Douzou, P. & Sligar, S. (1990) Effect of the tyrosine 96 hydrogen bond on the inactivation of cytochrome P-450cam induced by hydrostatic pressure, Eur. J. Biochem. 193, 383386.
  • Distèche, A. (1972) Effects of pressure on the dissociation of week acids, Symp. Soc. Exp. Biol. 26, 2760.
  • Dufour, E., Hervé, G. & Haertlé, T. (1992) High pressure and biotechnology, Colloq. Inserm 224, 147150.
  • Durchschlag, H. (1986) in Thermodynamic data for biochemistry and biotechnology (Hinz, H.-J., ed) pp. 45128, Springer Verlag Berlin, Heidelberg , New York , Tokyo .
  • Erijman, L. & Weber, G. (1991) Oligomeric protein associations: transition from stochastic to deterministic equilibrium, Biochemistry 30, 15951599.
  • Erijman, L., Lorimer, G. H. & Weber, G. (1993) Reversible dissociation and conformational stability of dimeric ribulose biphosphate carboxylase, Biochemistry 32, 51875195.
  • Franks, F., (ed.) (19721982) Water: A Comprehensive Treatise, vols 1–7, Plenum, New York .
  • Franks, F., (ed.) (19851990) Water Science Reviews, vols 1–5, Cambridge University Press, Cambridge .
  • Fukuda, M. & Kunugi, S. (1984) Pressure dependence of thermolysin catalysis, Eur. J. Biochem. 142, 565570.
  • Gekko, K. & Hasegawa, Y. (1986) Compressibility-structure relationship of globular proteins, Biochemistry 25, 65636571.
  • Gekko, K. & Hasegawa, Y. (1989) Effect of temperature on the compressibility of native globular proteins, J. Phys. Chem. 93, 426429.
  • Gibbs, A. & Somero, G. N. (1990) Pressure adaptation of teleost gill Na+/K+-ATPase: role of the lipid and protein moieties, J. Comp. Physiol. B 160, 431439.
  • Goldbeck, A., Lechner, M. D., Witz, J., Nordmeier, E. & Ibel, K. (1991) The thermal stability of turnip yellow mosaic virus under hydrostatic pressure. A small angle neutron scattering study, Eur. Biophys. J. 20, 151156.
  • Goldberg, M. E., Jaenicke, R. & Rudolph, R. (1991) A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg-white lysozyme, Biochemistry 30, 27902797.
  • Groß, M. & Jaenicke, R. (1990) Pressure-induced dissociation of tight couple ribosomes, FEBS Lett. 267, 239241.
  • Groß, M. & Jaenicke, R. (1991) Growth inhibition of lysozyme crystals at high hydrostatic pressure, FEBS Lett. 284, 8790.
  • Groß, M. & Jaenicke, R. (1992) High pressure and biotechnology, Colloq. Inserm 224, 8387.
  • Groß, M., Jaenicke, R. & Nierhaus, K. H. (1992) High pressure and biotechnology, Colloq. Inserm 224, 159161.
  • Groß, M. & Jaenicke, R. (1993) A kinetic model explaining the effects of hydrostatic pressure on nucleation and growth of lysozyme crystals, Biophys. Chem. 45, 245252.
  • Groß, M., Auerbach, G. & Jaenicke, R. (1993a) The activities of monomeric enzymes show complex pressure-dependence, FEBS Lett. 321, 256260.
  • Groß, M., Lehle, K., Jaenicke, R. & Nierhaus, K. H. (1993b) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state, Eur. J. Biochem. 218, 463468.
  • Harrington, W. F. & Kegeles, G. (1973) Pressure effects in ultracentrifugation of interacting systems, Methods Enzymol. 27, 306345.
  • Harris, R. D., Jacobs, M., Long, M. M. & Urry, D. W. (1976) A high-pressure sample cell for circular dichroism studies, Anal. Biochem. 73, 363368.
  • Hawley, S. A. (1971) Reversible pressure-temperature denaturation of chymotrypsinogen, Biochemistry 10, 24362442.
  • Hawley, S. A. (1978) High-pressure techniques, Methods Enzymol. 49, 1424.
  • Hayashi, R. (1989) in Engineering and Food 2 (Spiess, W. E. L. & Schubert, H., eds) pp. 815826, Elsevier Applied Science, Amsterdam .
  • Hayashi, R. (1992) High pressure and biotechnology, Colloq. Inserm 224, 185193.
  • Heiber-Langer, I., Hooper, A. B. & Balny, C. (1992a) Pressure modulation of cytochrome-to-cytochrome electron transfer. Models and enzyme reactions, Biophys. Chem. 43, 265277.
  • Heiber-Langer, I., Cléry, C., Frank, J., Masson, P. & Balny, C. (1992b) Interaction of cytochrome cL with methanol dehydrogenase from Methylophaga marina 42: thermodynamic arguments for conformational change, Eur. Biophys. J. 21, 241250.
  • Heremans, K. (1982) High pressure effects on proteins and other biomolecules, Annu. Rev. Biophys. Bioeng. 11, 121.
  • Heremans, K. (1987) in Current perspectives in high pressure biology (Jannasch, H. W. et al., eds) pp. 225244, Academic Press, London .
  • Hoover, D. G., Metrick, C., Papineau, A. M., Farkas, D. F. & Knorr, D. (1989) Biological effects of high hydrostatic pressure on food microorganisms, Food Technol. 43, 99107.
  • Huber, R. (1988) Flexibility and rigidity of proteins and protein-pigment complexes, Angew. Chem. Int. Ed. Engl. 27, 7988.
  • Iwahashi, H., Kaul, S. C., Obuchi, K. & Komatsu, Y. (1991) Induction of barotolerance by heat shock treatment in yeast, FEMS Microbiol. Lett. 80, 325328.
  • Jaenicke, R. & Lauffer, M. A. (1969) Polymerization-depolymerization of TMV-protein: studies on the role of water, Biochemistry 8, 30833092.
  • Jaenicke, R., Gregori, E. & Laepple, M. (1979) Hydrodynamic and spectral effects upon ligand binding to porcine LDH, Biophys. Struct. Mech. 6, 5765.
  • Jaenicke, R. (1981) Enzymes under extremes of physical conditions, Annu. Rev. Biophys. Bioeng. 10, 167.
  • Jaenicke, R., Lüdemann, H.-D. & Schade, B. C. (1981) High pressure effects on the endothermic association of TMV protein, Biophys. Struct. Mech. 7, 195203.
  • Jaenicke, R. (1987) in Current perspectives in high pressure biology (Jannasch, H. W. et al. eds) pp. 257272, Academic Press, London .
  • Jaenicke, R., Bernhardt, G., Lüdemann, H.-D. & Stetter, K. O. (1988) Pressure induced alterations in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus, Appl. Environ. Microbiol. 54, 237580.
  • Jaenicke, R. (1991a) Protein folding: local structures, domains, subunits, and assemblies, Biochemistry 30, 31473161.
  • Jaenicke, R. (1991b) Protein stability and molecular adaptation to extreme conditions, Eur. J. Biochem. 202, 715728.
  • Jaenicke, R. (1992) Protein stability, folding and association, in Application potential of immobilized macromolecules (Sleytr, U. B., ed.) pp. 121, Springer Verlag, Berlin , Heidelberg , New York .
  • Jaenicke, R. & Buchner, J. (1993) Protein folding: from “unboiling an egg’ to “catalysis of folding”, Chemtracts Biochem. Mol. Biol. 4, 130.
  • Jannasch, H. W. & Taylor, C. D. (1984) Deep-sea microbiology, Annu. Rev. Microbiol. 38, 487514.
  • Jannasch, H. W. (1985) Leben in der Tiefsee auf chemosynthetischer Basis, Naturwissensch. 72, 285290.
  • Jannasch, H. W. (1987) in Current perspectives in high pressure biology (Jannasch, H. W. et al., eds) pp. 116, Academic Press, London .
  • Jannasch, H. W., Marquis, R. E. & Zimmerman, A. M., (eds) (1987) Current perspectives in high pressure biology, Academic Press, London .
  • Johnson, F. H. & McK. Schlegel, F. (1948) Hemoglobin oxygenation in relation to hydrostatic pressure, J. Cell. Comp. Physiol. 31, 421425.
  • Jonas, J. (1992) High pressure and biotechnology, Colloq. Inserm 224, pp. 123127.
  • Kaminsky, S. M. & Richards, F. M. (1992) Reduction of thioredoxin significantly decreases its partial specific volume and adiabatic compressibility, Protein Sci. 1, 2230.
  • Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 167.
  • Kharakoz, D. P. (1991) Volumetric properties of proteins and their analogues in dilute water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70°C, J. Phys. Chem. 95, 56345642.
  • Kharakoz, D. P. & Sarvazyan, A. P. (1993) Hydrational and intrinsic compressibilities of globular proteins, Biopolymers 33, 1126.
  • King, L. & Weber, G. (1986) Conformational drift of dissociated LDH, Biochemistry 25, 36323637.
  • Kornblatt, J. A., Theodorakis, J., Hui Bon Hoa, G. & Margoliash, E. (1992) Cytochrome c and cytochrome c oxidase interactions: the effects of ionic strength and hydrostatic pressure studied with site-specific modifications of cytochrome c, Biochem. Cell. Biol. 70, 539547.
  • Kraulis, P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures, J. Appl. Crystallogr. 24, 946950.
  • Krzyzaniak, A., Salanski, P., Jurczak, J. & Barciszewski, J. (1991) B-Z DNA reversible conformation changes effected by high pressure, FEBS Lett. 279, 14.
  • Kundrot, C. E. & Richards, F. M. (1987) Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres, J. Mol. Biol. 193, 157170.
  • Kundrot, C. E. & Richards, F. M. (1988) Effect of hydrostatic pressure on the solvent in crystals of hen egg-white lysozyme, J. Mol. Biol. 200, 401410.
  • Lang, E. W. & Lüdemann, H.-D. (1982) Anomalies of liquid water, Angew. Chem. Int. Ed. Engl. 21, 315329.
  • Lang, E. W. & Lüdemann, H.-D. (1990) High-pressure NMR studies on water and aqueous solutions in NMR basic principles and progress (Diehl, P., Fluck, E., Günther, H., Kosfeld, R. & Seelig, J., eds) vol. 24, 129187, Springer Verlag, Heidelberg , Berlin , New York .
  • Lauffer, M. A. & Dow, R. B. (1941) Denaturation of TMV at high pressure, J. Biol. Chem. 140, 509518.
  • Li, T. M., Hook, J. W., Drickamer, H. G. & Weber, G. (1976) Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme, Biochemistry 15, 55715580.
  • Lindquist, S. (1986) The heat-shock response, Annu. Rev. Biochem. 55, 11511191.
  • Lorenz, R. (1993) Kultivierung mariner Pilze unter erhöhtem hydrostatischem Druck, Doctoral thesis, University of Regensburg.
  • Lorenz, R. & Molitoris, H. P. (1992a) High pressure and biotechnology, Colloq. Inserm 224, 315319.
  • Lorenz, R. & Molitoris, H. P. (1992b) High pressure and biotechnology, Colloq. Inserm 224, 537539.
  • Lüdemann, H.-D. (1992) High pressure and biotechnology, Colloq. Inserm 224, 371379.
  • Macdonald, A. G. (1984) The effects of pressure on the molecular structure and physiological functions of cell membranes, Phil. Trans. R. Soc. Lond. B 304, 4768.
  • Macdonald, A. G. (1988) Application of the theory of homeoviscous adaptation to excitable membranes: pre-synaptic processes, Biochem. J. 256, 313327.
  • Macdonald, A. G., Ramsey, R. L., Shelton, C. J. & Usherwood, P. N. R. (1989) An apparatus for single-channel patch recording at high pressure, J. Physiol. (Lond.) 409, 2P.
  • Macdonald, A. G. (1992) High pressure and biotechnology, Colloq. Inserm 224, 6775.
  • Macgregor, R. B. (1992) Footprinting of EcoRI endonuclease at high pressure, Biochim. Biophys. Acta 1129, 303308.
  • Marden, M. C., Hui Bon Hoa, G. & Stetzkowski-Marden, F. (1986) Heme protein fluorescence versus pressure, Biophys. J. 49, 619627.
  • Marquis, R. E. (1982) Microbial barobiology, Bioscience 32, 267271.
  • Martins, J. F., Sampaio, T. C., Carvalho, I. B., Nunes da Ponte, M. & Barreiros, S. (1992) High pressure and biotechnology, Colloq. Inserm 224, 411415.
  • Masson, P. & Balny, C. (1990) Conformational plasticity of butyrylcholinesterase as revealed by high pressure experiments, Biochim. Biophys. Acta 1041, 223231.
  • Morild, E. (1981) The theory of pressure effects on enzymes, Adv. Protein Chem. 34, 93163.
  • Müller, K., Lüdemann, H.-D. & Jaenicke, R. (1981) Pressure-induced structural changes of pig heart LDH, Biophys. Chem. 14, 101110.
  • Müller, K., Lüdemann, H.-D. & Jaenicke, R. (1982) Thermodynamics and mechanism of high-pressure deactivation and dissociation of porcine lactic dehydrogenase, Biophys. Chem. 16, 17.
  • Müller, K., Seifert, T. & Jaenicke, R. (1984) High pressure dissociation of LDH from Bacillus stearothermophilus and reconstitution of the enzyme after denaturation in 6 M guanidine hydrochloride, Eur. Biophys. J. 11, 8794.
  • Nierhaus, K. H. (1990) The allosteric three-site model for the ribosomal elongation cycle: features and future, Biochemistry 29, 49975008.
  • Nölting, B. & Sligar, S. G. (1993) Adiabatic compressibility of molten globules, Biochemistry 32, 1231912323.
  • Nover, L., (ed.) (1991) Heat shock response, CRC Press, Boca Raton , Fl .
  • Perrut, M. (1992) High pressure and biotechnology, Colloq. Inserm 224, 401410.
  • Perutz, M. F. & Raidt (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2, Nature 255, 256259.
  • Pin, S., Royer, C. A., Gratton, E., Alpert, B. & Weber, G. (1990) Subunit interactions in hemoglobin probed by fluorescence and high-pressure techniques, Biochemistry 29, 91949202.
  • Privalov, P. L. (1993) in Protein folding (Creighton, T. E., ed.) pp. 83126, W. H. Freeman & Co., New York .
  • Radford, S. E., Dobson, C. M. & Evans, P. A. (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways, Nature 358, 302307.
  • Redfield, C. & Dobson, C. M. (1988) Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution, Biochemistry 27, 122136.
  • Richards, F. M. (1977) Areas, volumes, packing and protein structure, Annu. Rev. Biophys. Bioeng. 6, 151176.
  • Royer, C. A., Chakerian, A. E. & Matthews, K. S. (1990) Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy, Biochemistry 29, 49594966.
  • Royer, C. A., Hinck, A. P., Loh, S. N., Prehoda, K. E., Peng, X., Jonas, J. & Markley, J. L. (1993) Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy, Biochemistry 32, 52225232.
  • Ruan, K. & Weber, G. (1989) Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase, Biochemistry 28, 21442153.
  • Samarasinghe, S. D., Campbell, D. M., Jonas, A. & Jonas, J. (1992) High-resolution NMR study of pressure-induced unfolding of lysozyme, Biochemistry 31, 77737778.
  • Sarvazyan, A. (1991) Ultrasonic velocimetry of biological compounds, Annu. Rev. Biophys. Biophys. Chem. 20, 321342.
  • Scarlata, S. F., Ropp, T. & Royer, C. A. (1989) Histone subunit interactions as investigated by high pressure, Biochemistry 28, 66376641.
  • Schade, B. C., Lüdemann, H.-D., Rudolph, R. & Jaenicke, R. (1980a) Kinetics of reconstitution of porcine muscle LDH after reversible high pressure dissociation, Biophys. Chem. 11, 257263.
  • Schade, B. C., Lüdemann, H.-D., Jaenicke, R. (1980b) Reversible high-presssure dissociation of LDH from pig muscle, Biochemistry 19, 11211126.
  • Schmid, G., Lüdemann, H.-D. & Jaenicke, R. (1975) High pressure effects on the activity of glycolytic enzymes, Biophys. Chem. 3, 9098.
  • Schulz, E., Lüdemann, H.-D. & Jaenicke, R. (1976a). High pressure equilibrium studies on the dissociation-association of E. coli ribosomes, FEBS Lett. 64, 4043.
  • Schulz, E., Jaenicke, R. & Knoche, W. (1976b) Pressure-jump relaxation studies of the association-dissociation reaction of E. coli ribosomes, Biophys. Chem. 11, 253257.
  • Schwarz, J. R. & Landau, J. V. (1972) Hydrostatic pressure effects on E. coli: site of inhibition of protein synthesis, J. Bacteriol. 109, 945948.
  • Seifert, T., Bartholmes, P. & Jaenicke, R. (1982) Reconstitution of the isolated β2-subunit of tryptophan synthase from Escherichia coli after dissociation induced by high hydrostatic pressure, Biophys. Chem. 15, 18.
  • Seifert, T., Bartholmes, P. & Jaenicke, R. (1984) High-pressure dissociation of the β2-dimer of tryptophan synthase from Escherichia coli monitored by sucrose gradient centrifugation, FEBS Lett. 173, 381384.
  • Seifert, T., Bartholmes, P. & Jaenicke, R. (1985) Influence of cofactor PLP on reversible high-pressure denaturation of isolated β2 dimer of tryptophan synthase bienzyme complex from E. coli, Biochemistry 24, 339345.
  • Silva, J., Villas-Boas, M., Bonafe, C. F. S. & Meirelles, S. C. (1989) Anomalous pressure dissociation of large protein aggregates, J. Biol. Chem. 264, 1586315868.
  • Silva, J., Silveira, C. F., Correira, A. & Pontes, L. (1992) Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor, J. Mol. Biol. 223, 545555.
  • Sleigh, M. A. & Macdonald, A. G., (eds) (1972): The effects of pressure on organisms, Symp. Soc. Exp. Biol. 26.
  • Smith, E. B. (1984) The biological effects of high pressure: underlying principles, Phil. Trans. R. Soc. Lond. B 304, 516.
  • Somero, G. N. (1992) Adaptations to high hydrostatic pressure, Annu. Rev. Physiol. 54, 557577.
  • Sonoike, K., Setoyama, T., Kuma, Y. & Kobayashi, S. (1992) High pressure and biotechnology, Colloq. Inserm 224, 297301.
  • Spirin, A. S. (1971) On the equilibrium of the association-dissociation reaction of ribosomal subparticles and on the existance of the so-called “60 S intermediate” (“swollen 70 S”) during centrifugation of the equilibrium mixture, FEBS Lett. 14, 349353.
  • Spitzer, M., Gartig, F. & van Eldik, R. (1988) Compact, transportable, and multipurpose high-pressure unit for UV-VIS spectroscopic measurements at pressures up to 200 MPa, Rev. Sci. Instrum. 59, 20922093.
  • Sturtevant, J. M., Velicelebi, G., Jaenicke, R. & Lauffer, M. A. (1981) Scanning calorimetric investigation of the polymerization of the coat protein of TMV, Biochemistry 20, 37923800.
  • Suzuki, K., Miyosawa, Y. & Suzuki, C. (1963) Protein denaturation by high pressure. Measurements of turbidity of isoelectric ovalbumin and horse serum albumin under high pressure, Arch. Biochem. Biophys. 101, 225228.
  • Takahashi, K. (1992) High pressure and biotechnology, Colloq. Inserm 224, 303307.
  • Taube, D. J., Projahn, H.-D., van Eldik, R., Magde, D. & Taylor, T. G. (1990) Mechanism of ligand binding to hemes and hemoproteins. A high-pressure study, J. Am. Chem. Soc. 112, 68806886.
  • Thomas, W. E. & Ellar, D. J. (1983) Bacillus thuringiensis var. israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo, J. Cell Sci. 60, 181197.
  • Trent, J. D., Chastain, R. A. & Yayanos, A. A. (1984) Possible artefactual basis for apparent bacterial growth at 250°C, Nature 307, 737740.
  • Tsou, C.-L. (1986) Location of the active site of some enzymes in limited and flexible molecular regions, Trends Biochem. Sci. 11, 427429.
  • Unno, M., Ishimori, K. & Morishima, I. (1990) High-pressure laser photolysis study of hemoproteins. Effects of pressure on carbon monoxide binding dynamics for R- and T-state hemoglobins, Biochemistry 29, 1019910205.
  • van Bogelen, R. A. & Neidhardt, F. C. (1990) Ribosomes as sensors of heat and cold shock in E. coli, Proc. Natl Acad. Sci. USA 87, 55895593.
  • van Eldik, R., Asano, T. & Le Noble, W. J. (1989) Activation and reaction volumes in solution, Chem. Rev. 89, 549688.
  • Visuri, K., Kaipainen, E., Kivimäki, J., Niemi, H., Leisola, M. & Palosaari, S. (1990) A new method for protein crystallization using high pressure, Bio/technology 8, 547549.
  • Weber, G. & Drickamer, H. G. (1983) The effect of high pressure upon proteins and other biomolecules, Q. Rev. Biophys. 16, 89112.
  • Welch, T. J., Farewell, A., Neidhardt, F. C. & Bartlett, D. H. (1993) Stress response of E. coli to elevated hydrostatic pressure, J. Bacteriol. 175, 71707177.
  • White, R. H. (1984) Hydrolytic stability of biomolecules at high temperatures and its implications for life at 250°C, Nature 310, 430432.
  • Wu, D. & Federici, B. A. (1993) A 20 kDa protein preserves cell viability and promotes cytA crystal formation during sporulation in Bacillus thuringiensis, J. Bacteriol. 175, 52765280.
  • Yayanos, A. A., van Boxtel, R. & Dietz, A. S. (1984) High-pressure-temperature gradient instrument: use for determining the temperature and pressure limits of bacterial growth, Appl. Environ. Microbiol. 48, 771776.
  • Yayanos, A. A. (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria, Proc. Natl Acad. Sci. USA 83, 95429546.
  • Yayanos, A. A. & Pollard, E. C. (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in E. coli, Biophys. J. 9, 14641482.
  • Yayanos, A. A. & Delong, E. F. (1987) in Current perspectives in high pressure biology (Jannasch, H. W. et al., eds) pp. 1732, Academic Press, London .
  • Zimmerman, A. M., (ed.) (1970) High pressure effects on cellular processes, Academic Press, New York .
  • Zipp, A. & Kauzmann, W. (1973) Pressure denaturatiom of metmyoglobin, Biochemistry 12, 42174228.
  • ZoBell, C. E. & Johnson, F. H. (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria, J. Bacteriol. 57, 179.
  • ZoBell, C. E. (1970) in High pressure effects on cellular processes (Zimmerman, A. M., ed.) pp. 85130, Academic Press, New York .