SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

A previously cloned gene of Saccharomyces cerevisiae, which complements the growth defect of a phosphoglucomutase (pgm1Δ/pgm2Δ) double deletion mutant on a pure galactose medium [Boles, E., Liebetrau, W., Hofmann, M. & Zimmermann, F. K. (1994) Eur. J. Biochem. 220, 83–96], was identified as the structural gene encoding N-acetylglucosamine-phosphate mutase. The complete nucleotide sequence of the gene, AGM1, and surrounding regions was determined. AGM1 codes for a predicted 62-kDa protein with 557 amino acids and is located on chromosome V adjacent to the known gene PRB1 encoding protease B. No extended nucleotide or amino acid sequence similarities could be found in the databases, except for a small region of amino acids with high similarity to the active-site consensus sequence of hexosephosphate mutases. Three putative pheromone-responsive elements have been identified in the upstream region of the AGM1 gene. The gene is essential for cell viability. An agm1 deletion mutant progresses through only approximately five cell cycles to form a ‘string' of undivided cells with an abnormal cell morphology resembling glucosamine auxotrophic mutants. Expression of the AGM1 gene on a multi-copy plasmid led to a significantly increased N-acetylglucosamine-phosphate mutase activity. Unlike over-expression of the AGM1 gene in a pgm1/pgm2 double deletion mutant which could restore phosphoglucomutase activity, over-expression of the PGM2 gene encoding the major isoenzyme of phosphoglucomutase did not increase N-acetylglucosamine-phosphate-mutase activity and did not restore growth of agm1 deletion mutant cells. Our observations indicate that the different hexosephosphate mutases of S. cerevisiae have partially overlapping substrate specifities but, nevertheless, distinct physiological functions.

Abbreviations
AGM1

gene encoding N-acetylglucosamine-phosphate mutase

PGM2

gene encoding the major phosphoglucomutase isoenzyme

Enzymes
 

N-Acetylglucosamine-phosphate mutase (EC 5.4.2.3)

 

phosphoglucomutase (EC 5.4.2.2)

 

phosphomannomutase (EC 5.4.2.8)

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • Appeltauer, U. & Achstetter, T. (1989) Hormone-induced expression of the CHS1 gene from Saccharomyces cerevisiae, Eur. J. Biochem. 181, 243247.
  • Ballou, C. E. (1982) Yeast cell wall and cell surface, in The molecular biology of the yeast Saccharomyces. Metabolism and gene expression (Strathern, J. N., Jones, E. W. & Broach, J. R., eds) vol. 2, pp. 335360, Cold Spring Harbor Laboratory Press, Plainsville , NY .
  • Ballou, C. E. (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects, Methods Enzymol. 185, 440470.
  • Ballou, C. E., Maitra, S. K., Walker, J. W. & Whelan, W. L. (1977) Developmental defects associated with glucosamine auxotrophy in Saccharomyces cerevisiae, Proc. Natl Acad. Sci. USA 74, 43514355.
  • Bennetzen, J. L. & Hall, B. D. (1982) Codon selection in yeast, J. Biol. Chem. 257, 30263031.
  • Bernstein, M., Hoffmann, W., Ammerer, G. & Schekman, R. (1985) Characterization of a gene product (SEC53p) required for protein assembly in the yeast endoplasmic reticulum, J. Cell Biol. 101, 23742382.
  • Bevan, P. & Douglas, H. C. (1969) Genetic control of phosphoglucomutase variants in Saccharomyces cerevisiae, J. Bacteriol. 98, 532535.
  • Boles, E. & Zimmermann, F. K. (1993a) Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster, Curr. Genet. 23, 187191.
  • Boles, E. & Zimmermann, F. K. (1993b) Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites, Arch. Microbiol. 160, 324328.
  • Boles, E., Liebetrau, W., Hofmann, M. & Zimmermann, F. K. (1994) A family of hexosephosphate mutases in Saccharomyces cerevisiae, Eur. J. Biochem. 220, 8396.
  • Botstein, D., Falco, S. C., Stewart, S. E., Brennan, M., Scherer, S., Stinchcomb, D. T., Struhl, K. & Davis, R. W. (1979) Sterile host yeast (SHY): a eukaryotic system of biological containment for recombinant DNA experiments, Gene (Amst.) 8, 1724.
  • Bulawa, C. E. (1993) Genetics and molecular biology of chitin synthesis in fungi, Annu. Rev. Microbiol. 47, 505534.
  • Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L. & Robbins, P. (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo, Cell 46, 213225.
  • Cabib, E., (1981) Chitin: structure, metabolism, and regulation of biosynthesis, in Encyclopedia of plant physiology, Carbohydrates II: extracellular carbohydrates (Tanner, W. & Loewus, F. A., eds) vol. 13B, pp. 395416, Springer-Verlag, Berlin , Heidelberg .
  • Cabib, E., Roberts, R. & Bowers, B. (1982) Synthesis of the yeast cell wall and its regulation, Annu. Rev. Biochem. 51, 763793.
  • Cabib, E., Silverman, S. J., Shaw, J. A., Das Gupta, S., Park, H.-M., Mullins, T., Mol, P. C. & Bowers, B. (1991) Carbohydrates as structural constituents of yeast cell wall and septum, Pure Appl. Chem. 63, 483489.
  • Ciriacy, M. & Breitenbach, I. (1979) Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae, J. Bacteriol. 139, 152160.
  • Cohen, E. (1987) Chitin biochemistry: synthesis and inhibition, Annu. Rev. Entomol. 32, 7193.
  • Fiske, C. H. & Subbarow, Y. P. (1925) The colorimetric determination of phosphorus, J. Biol. Chem. 66, 375400.
  • Gietz, R. D. & Sugino, A. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene (Amst.) 74, 527534.
  • Guthrie, C. & Fink, G. R. (1991) Guide to yeast genetics and molecular biology, Methods Enzymol. 194, Academic Press, San Diego .
  • Herscovics, A. & Orlean, P. (1993) Glycoprotein biosynthesis in yeast, FASEB J. 7, 540550.
  • Kepes, F. & Schekman, R. (1988) The yeast SEC53 gene encodes phosphomannomutase, J. Biol. Chem. 263, 91559161.
  • Kronstad, J. W., Holly, J. A. & MacKay, V. L. (1987) A yeast operator overlaps an upstream activation site, Cell 50, 369377.
  • Kukuruzinska, M. A., Bergh, M. L. E. & Jackson, B. J. (1987) Protein glycosylation in yeast, Annu. Rev. Biochem. 56, 915944.
  • Moehle, C. M., Tizard, R., Lemmon, S. K., Smart, J. & Jones, E. W. (1987) Protease B of the lysosome-like vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases, Mol. Cell. Biol. 7, 43904399.
  • Mortimer, R. K., Schild, D., Contopoulou, C. R. & Kans, J. A. (1989) Genetic map of Saccharomyces cerevisiae, edition 10, Yeast 5, 341343.
  • Oh, D. & Hopper, J. E. (1990) Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible, Mol. Cell. Biol. 10, 14151422.
  • Orlean, P. (1987) Two chitin synthases in Saccharomyces cerevisiae, J. Biol. Chem. 262, 57325739.
  • Orlean, P., Arnold, E. & Tanner, W. (1985) Apparent inhibition of glycoprotein synthesis by S. cerevisiae mating pheromones, FEBS Lett. 184, 313317.
  • Reissig, J. L. (1956) Phosphoacetylglucosamine mutase of Neurospora, J. Biol. Chem. 219, 753767.
  • Rothstein, R. J. (1983) One step gene disruption in yeast, Methods Enzymol. 101, 202211.
  • Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor , NY .
  • Sanger, F., Nicklen, S. & Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors, Proc. Natl Acad. Sci. USA 74, 54635467.
  • Schiestl, R. H. & Gietz, R. D. (1989) High efficiency transformation of intact yeast cells by single stranded nucleic acids as a carrier, Curr. Genet. 16, 339346.
  • Selitrennikoff, C. P. & Sonneborn, D. R. (1976) The last two pathway-specific enzyme activities of hexosamine biosynthesis are present in Blastocladiella emersonii zoospores prior to germination, Biochim. Biophys. Acta 451, 408416.
  • Smith, D. J., Proudfoot, A., Friedli, L., Klig, L. S., Paravicini, G. & Payton, M. A. (1992) PMI40, an intron-containing gene required for early steps in yeast mannosylation, Mol. Cell. Biol. 12, 29242930.
  • Strathmann, M., Hamilton, B. A., Mayeda, C. A., Simon, M. I., Meyerowitz, E. M. & Palazzolo, M. J. (1991) Transposon-facilitated DNA sequencing, Proc. Natl Acad. Sci. USA 88, 12471250.
  • Tanner, W. (1990) Synthesis and function of glycosylated proteins in Saccharomyces cerevisiae, in Biochemistry of cell walls and membranes in fungi (Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W. & Copping, L. G., eds), pp. 109118, Springer-Verlag, New York .
  • Tsoi, A. & Douglas, H. C. (1964) The effect of mutation on two forms of phosphoglucomutase in Saccharomyces, Biochim. Biophys. Acta 92, 513520.
  • Valdivieso, M. H., Mol, P. C., Shaw, J. A., Cabib, E. & Durán, A. (1991) Cloning of CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae, J. Cell. Biol. 114, 101109.
  • Watzele, G. & Tanner, W. (1989) Cloning of the glutamine:fructose-6-phosphate amidotransferase gene from yeast. Pheromonal regulation of its transcription, J. Biol. Chem. 264, 87538758.
  • Whelan, W. L. & Ballou, C. E. (1975) Sporulation in D-glucosamine auxotrophs of Saccharomyces cerevisiae: meiosis with defective ascospore wall formation, J. Bacteriol. 124, 15451557.
  • Zamenhoff, S. (1957) Preparation and assay of deoxyribonucleic acids from animal tissue, Methods Enzymol. 3, 696704.
  • Zaret, K. S. & Sherman, F. (1982) DNA sequence required for efficient transcrition termination in yeast, Cell 28, 563573.