• MADS-box;
  • transcription factors;
  • protein–protein interactions;
  • protein-DNA interactions;
  • transcriptional regulation


  1. Top of page
  2. Abstract
  3. References

The MADS-box family of transcription factors has been defined on the basis of primary sequence similarity amongst numerous proteins from a diverse range of eukaryotic organisms including yeasts, plants, insects, amphibians and mammals. The MADS-box is a conserved motif found within the DNA-binding domains of these proteins and the name refers to four of the originally identified members: MCM1, AG, DEFA and SRF. Several proteins within this family have significant biological roles. For example, the human serum-response factor (SRF) is involved in co-ordinating transcription of the proto-oncogene c-fos, whilst MCM1 is central to the transcriptional control of cell-type specific genes and the pheromone response in the yeast Saccharomyces cerevisiae. The RSRF/MEF2 proteins comprise a subfamily of this class of transcription factors which are key components in muscle-specific gene regulation. Moreover, in plants, MADS-box proteins such as AG, DEFA and GLO play fundamental roles during flower development.

The MADS-box is a contiguous conserved sequence of 56 amino acids, of which 9 are identical in all family members described so far. Several members have been shown to form dimers and consequently two functional regions within the MADS-box have been defined. The N-terminal half is the major determinant of DNA-binding specificity whilst the C-terminal half is necessary for dimerisation. This organisation allows the potential formation of numerous proteins, with subtly different DNA-binding specificities, from a limited number of genes by heterodimerisation between different MADS-box proteins. The majority of MADS-box proteins bind similar sites based on the consensus sequence CC(A/T)6 GG although each protein apparently possesses a distinct binding specificity. Moreover, several MADS-box proteins specifically recruit other transcription factors into multi-component regulatory complexes. Such interactions with other proteins appears to be a common theme within this family and play a pivotal role in the regulation of target genes.


epidermal growth factor


mitogen-activated protein


ternary complex factors


serum-response elemant bHLH proteins, basic-helix-loop-helix proteins


upstream activator sequences


other proteins are defined in Table 1


  1. Top of page
  2. Abstract
  3. References
  • 1
    Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. & Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus, Science 250, 931936.
  • 2
    Sharrocks, A. D., von Hesler, F. & Shaw, P. E. (1993) The identification of elements determining the different DNA binding specificities of the MADS box proteins p67SRF and RSRFC4, Nucleic Acids Res. 21, 215221.
  • 3
    Herskowitz, I. (1989) A regulatory hierarchy for cell specialization in yeast, Nature 342, 749757.
  • 4
    Sprague, G. F. (1990) Combinatorial associations of regulatory proteins and the control of cell type in yeast, Adv. Genet. 27, 3362.
  • 5
    Dolan, J. W. & Fields, S. (1991) Cell-type-specific transcription in yeast, Biochim. Biophys. Acta 1088, 155169.
  • 6
    Treisman, R. & Ammerer, G. (1992) The SRF and MCM1 transcription factors, Curr. Opin. Genet. Dev. 2, 221226.
  • 7
    Dubois, E. & Messenguy, F. (1991) In vitro studies of the binding of the ARGR proteins to the ARG5,6 promoter, Mol. Cell. Biol. 11, 21622168.
  • 8
    Norman, C., Runswick, M., Pollock, R. & Treisman, R. (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element, Cell 55, 9891003.
  • 9
    Mohun, T. J., Chambers, A. E., Towers, N. & Taylor, M. V. (1991) Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: Identification of a CArG box-binding activity as SRF, EMBO J. 10, 933940.
  • 10
    Affolter, M., Montagne, J., Walldorf, U., Groppe, J., Kloter, U., LaRosa, M. & Gehring, W. J. (1994) The Drosophila SRF homo-log is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development, Development 120, 743753.
  • 11
    Treisman, R. (1990) The SRE: a growth factor responsive transcriptional regulator, Semin. Cancer Biol. 1, 4758.
  • 12
    Treisman, R. (1992) The serum response element, Trends Biochem. Sci. 17, 423426.
  • 13
    Buckingham, M. (1994) Molecular biology of muscle development, Cell 78, 1521.
  • 14
    Saedler, H. & Huijser, P. (1993) Molecular biology of flower development in Antirrhinum majus (snapdragon), Gene 135, 239243.
  • 15
    Ma, H. (1994) The unfolding drama of flower development: Recent results from genetic and molecular analyses, Genes & Dev. 8, 745756.
  • 16
    Weigel, D. & Meyerowitz, E. M. (1994) The ABCs of floral homeotic genes, Cell 78, 203209.
  • 17
    Davies, B. & Schwarz-Sommer, Z. (1994) Control of floral organ identity by homeotic MADS-box transcription factors, in Results and Problems in Cell Differentiation (Nover, L. ed.) vol. 20, pp. 235258, Springer-Verlag, Berlin Heidelberg .
  • 18
    Keleher, C. A., Goutte, C. & Johnson, A. D. (1988) The yeast cell-type-specific represser α2 acts cooperatively with a non-cell-type-specific protein, Cell 53, 927936.
  • 19
    Smith, D. L. & Johnson, A. D. (1992) A molecular mechanism for combinatorial control in yeast: MCM1 protein sets the spacing and orientation of the homoedomains of an α2 dimer, Cell 68, 133142.
  • 20
    Bender, A. & Sprague, G. F. (1987) MATα1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes, Cell 50, 681691.
  • 21
    Tan, S. & Richmond, T. J. (1990) DNA binding-induced conformational change of the yeast transcriptional activator PRTF, Cell 62, 367377.
  • 22
    Jarvis, E. E., Clark, K. L. & Sprague, G. F. (1989) The yeast transcription activator PRTF, a homolog of the mammalian serum response factor, is encoded by the MCM1 Gene, Genes & Dev. 3, 936945.
  • 23
    Passmore, S., Elble, R. & Tye, B-K. (1989) A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes, Genes & Dev. 3, 921935.
  • 24
    Marsh, L., Neiman, A. M. & Herskowitz, I. (1991) Signal transduction during pheromone response in yeast, Annu. Rev. Cell. Biol. 7, 699728.
  • 25
    Errede, B. & Ammerer, G. (1989) STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes, Genes & Dev. 3, 13491361.
  • 26
    Dolan, J. W., Kirkman, C. & Fields, S. (1989) The yeast STE12 protein binds to the DNA sequence mediating pheromone induction, Proc. Natl Acad. Sci. USA 86, 57035707.
  • 27
    Song, O.-K., Dolan, J. W., Yuan, Y.-O. & Fields, S. (1991) Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation, Genes & Dev. 5, 741750.
  • 28
    Lydall, D., Ammerer, G. & Nasmyth, K. (1991) A new role for MCM1 in yeast: cell-cycle regulation of SW15 transcription, Genes & Dev. 5, 24052419.
  • 29
    Koch, C. & Nasmyth, K. (1994) Cell-cycle regulated transcription in yeast, Curr. Opin. Cell Biol. 6, 451459.
  • 30
    Kuo, M.-H. & Grayhack, E. (1994) A library of yeast genomic MCM1 binding sites contains genes involved in cell-cycle control, cell wall and membrane structure and metabolism, Mol. Cell. Biol. 14, 348359.
  • 31
    Messenguy, F. & Dubois, E. (1993) Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae, Mol. Cell. Biol. 13, 25862592.
  • 32
    Passmore, S., Maine, G. T., Elble, R., Christ, C. & Tye, B.-K. (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα Cells, J. Mol. Biol. 204, 593606.
  • 33
    de Rijcke, M., Seneca, S., Punyammalee, B., Glansdorff, N. & Crabeel, M. (1992) Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine, Mol. Cell. Biol. 12, 6881.
  • 34
    Messenguy, F., Dubois, E. & Boonchird, C. (1991) Determination of the DNA-binding sequences of ARGR proteins to arginine anabolic and catabolic promoters, Mol. Cell. Biol. 11, 28522863.
  • 35
    Herschman, H. R. (1991) Primary response genes induced by growth factors and tumor promoters, Annu. Rev. Biochem. 60, 281319.
  • 36
    Treisman, R. (1994) Ternary complex factors: growth factor regulated transcriptional activators, Curr. Opin. Genet. Dev. 4, 96101.
  • 37
    Greenberg, M. E. & Ziff, E. B. (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311, 433438.
  • 38
    Shaw, P. E., Frasch, S. & Nordheim, A. (1989) Repression of c-fos transcription is mediated through p67SRF bound to the SRE, EMBO J. 8, 25672574.
  • 39
    Davis, R. J. (1993) The mitogen-activated protein kinase signal transduction pathway, J. Biol. Chem. 268, 1455314556.
  • 40
    Marshall, C. J. (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase, Curr. Opin. Genet. Dev. 4, 8289.
  • 41
    Gille, H., Sharrocks, A. D. & Shaw, P. E. (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter, Nature 358, 414416.
  • 42
    Marais, R., Wynne, J. & Treisman, R. (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain, Cell 73, 381393.
  • 43
    Zinck, R., Hipskind, R. A., Pingoud, V. & Nordheim, A. (1993) c-fos Transcriptional activation and repression correlate temporally with the phosphorylation status of TCP, EMBO J. 12, 23772387.
  • 44
    Rivera, V. M., Miranti, C. K., Misra, R. P., Ginty, D. D., Chen, R.-H., Blenis, J. & Greenberg, M. E. (1993) A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity, Mol. Cell. Biol. 13, 62606273.
  • 45
    Gossett, L. A., Kelvin, D. J., Sternberg, E. A. & Olson, E. N. (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol. Cell. Biol. 9, 50225033.
  • 46
    Pollock, R. & Treisman, R. (1991) Human SRF-related proteins: DNA-binding properties and potential regulatory targets, Genes & Dev. 5, 23272341.
  • 47
    Yu, Y.-T, Breitbart, R. E., Smoot, L. B., I. Y., Mahdavi, V. & Nadal-Ginard, B. (1992) Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors, Genes & Dev. 6, 17831798.
  • 48
    Leifer, D., Krainc, D., Yu, Y.-T, McDermott, J., Breitbart, R. E., Heng, J., Neve, R. L., Kosofsky, B., Nadal-Ginard, B. & Lipton, S. A. (1993) MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex, Proc. Natl Acad. Sci. USA 90, 15461550.
  • 49
    Martin, J. F., Schwarz, J. J. & Olson, E. N. (1993) Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors, Proc. Natl Acad. Sci. USA 90, 52825286.
  • 50
    McDermott, J. C., Cardoso, M. C., Yu, Y.-T, Andres, V., Leifer, D., Krainc, D., Lipton, S. A. & Nadal-Ginard, B. (1993) hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors, Mol. Cell. Biol. 13, 25642577.
  • 51
    Breitbart, R. E., Liang, C.-S., Smoot, L. B., Laheru, D. A., Mahdavi, V. & Nadal-Ginard, B. (1993) A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage, Development 118, 10951106.
  • 52
    Martin, J. F., Miano, J. M., Hustad, C. M., Copeland, N. G., Jenkins, N. A. & Olson, E. N. (1994) A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing, Mol. Cell. Biol. 14, 16471656.
  • 53
    Chambers, A. E., Kotecha, S., Towers, N. & Mohun, T. J. (1992) Muscle-specific expression of SRF-related genes in the early embryo of Xenopus laevis, EMBO J. 11, 49814991.
  • 54
    Lilly, B., Galewsky, S., Firulli, A. B., Schulz, R. A. & Olson, E. N. (1994) D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis, Proc. Natl Acad. Sci. USA 91, 56625666.
  • 55
    Nguygen, H. T., Bodmer, R., Abmayr, S. M., McDermott, J. C. & Spoerel, N. A. (1994) D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis, Proc. Natl Acad. Sci. USA 91, 75207524.
  • 56
    Edmondson, D. G., Cheng, T.-C., Cserjesi, P., Chakraborty, T. & Olson, E. N. (1992) Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2, Mol. Cell. Biol. 12, 36653677.
  • 57
    Olson, E. N. (1990) MyoD family: a paradigm for development? Genes & Dev. 4, 14541461.
  • 58
    Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T. K., Turner, D., Rupp, R., Hollenberg, S., Zhuang, Y. & Lassar, A. (1991) The myoD gene family: nodal point during specification of the muscle cell lineage, Science 257, 761766.
  • 59
    Edmondson, D. G. & Olson, E. N. (1993) Helix-loop-helix proteins as regulators of muscle-specific transcription, J. Biol. Chem. 268, 755758.
  • 60
    Olson, E. N. & Klein, W. H. (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out, Genes & Dev. 8, 18.
  • 61
    Leibham, D., Wong, M.-W., Cheng, T.-C., Schroeder, S., Weil, P. A., Olson, E. N. & Perry, M. (1994) Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter, Mol. Cell. Biol. 14, 686699.
  • 62
    Chambers, A. E., Logan, M., Kotecha, S., Towers, N., Sparrow, D. & Mohun, T. J. (1994) The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos, Genes & Dev. 8, 13241334.
  • 63
    Cserjesi, P. & Olson, E. N. (1991) Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products, Mol. Cell. Biol. 11, 48544862.
  • 64
    Funk, W. D. & Wright, W. E. (1992) Cyclic amplification and selection of targets for multicomponent complexes: Myogenin interacts with factors recognizing binding sites for basic helix-loop-helix, nuclear factor 1, myocyte-specific enhancer-binding factor 2, and COMF1 factor, Proc. Natl Acad. Sci. USA 89, 94849488.
  • 65
    Flanagan, C. A. & Ma, H. (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers, Plant Mol. Biol. 26, 581595.
  • 66
    Liu, Z., Moav, B., Faras, A. J., Guise, K. S., Kapuscinski, A. R. & Hackett, P. (1991) Importance of the CArG box in regulation of β-actin-encoding genes, Gene 108, 211217.
  • 67
    Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.-E., Saedler, H., Sommer, H. & Schwarz-Sommer, Z. (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis, EMBO J. 11, 46934704.
  • 68
    Pollock, R. & Treisman, R. (1990) A sensitive method for the determination of protein-DNA binding specificities, Nucleic. Acids Res. 18, 61976204.
  • 69
    Wynne, J. & Treisman, R. (1992) SRF and MCM1 have related but distinct DNA binding specificities, Nucleic. Acids Res. 20, 32973303.
  • 70
    Huang, H., Mizukami, Y., Hu, Y. & Ma, H. (1993) Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS, Nucleic Acids Res. 21, 47694776.
  • 71
    Dalton, S. & Treisman, R. (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element, Cell 68, 597612.
  • 72
    Mueller, C. G. F. & Nordheim, A. (1991) A protein domain conserved between yeast MCM1 and human SRF directs ternary complex formation, EMBO J. 10, 42194229.
  • 73
    Shaw, P. E. (1992) Ternary complex formation over the c-fos serum response element: p62TCF exhibits dual component specificity with contacts to DNA and an extended structure in the DNA-binding domain of p67SRF, EMBO J. 11, 30113019.
  • 74
    Gustafson, T. A., Taylor, A. & Kedes, L. (1989) DNA bending is induced by a transcription factor that interacts with the human c-FOS and α-actin promoters, Proc. Natl Acad. Sci. USA 86, 21622166.
  • 75
    Primig, M., Winkler, H. & Ammerer, G. (1991) The DNA binding and oligomerization domain of MCM1 is sufficient for its interaction with other regulatory proteins, EMBO J. 10, 42094218.
  • 76
    Bruhn, L., Hwang-Shum, J.-J. & Sprague, G. F. (1992) The N-terminal 96 residues of MCM1, a regulator of cell type-specific genes in Saccharomyces cerevisiae, are sufficient for DNA binding, transcription activation, and interaction with αl, Mol. Cell. Biol. 12, 35633572.
  • 77
    Sharrocks, A. D. (1994) A T7 expression vector for producing N-and C-terminal fusion proteins with glutathione S -transferase, Gene 138, 105108.
  • 78
    Sharrocks, A. D., Gille, H. & Shaw, P. E. (1993) Identification of amino acids essential for DNA binding and dimerization in p67SRF: Implications for a novel DNA-binding motif, Mol. Cell. Biol. 13, 123132.
  • 79
    Bruhn, L. & Sprague, G. F. (1994) MCM1 point mutants deficient in expression of α-specific genes: Residues important for interaction with α1, Mol. Cell. Biol 14, 25342544.
  • 80
    Christ, C. & Tye, B.-K. (1991) Functional domains of the yeast transcription/replication factor MCM1, Genes & Dev. 5, 751763.
  • 81
    Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P. J., Hansen, R., Tetens, F., Lönnig, W.-E., Saedler, H. & Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene Deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development, EMBO J. 77, 251263.
  • 82
    Harrison, S. C. & Aggarwal, A. K. (1990) DNA recogntion by proteins with the helix-turn-helix motif, Annu. Rev. Biochem. 59, 933969.
  • 83
    Pabo, C. O. & Sauer, R. T. (1992) Transcription factors: structural families and principles of DNA recognition, Annu. Rev. Biochem. 61, 10531095.
  • 84
    Ammerer, G. (1990) Identification, purification, and cloning of a polypeptide (PRTF/GRM) that binds to mating-specific promoter elements in yeast, Genes & Dev. 4, 299312.
  • 85
    Schmidt, R. J., Veilt, B., Mandel, M. A., Mena, M., Hake, S. & Yanofsky, M. F. (1993) Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS, Plant Cell 5, 729737.
  • 86
    Ma, H., Yanofsky, M. F. & Meyerowitz, E. M. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes & Dev. 5, 484495.
  • 87
    Goto, K. & Meyerowitz, E. M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA, Genes & Dev. 8, 15481560.
  • 88
    Ellenberger, T. (1994) Getting a grip on DNA recognition: Structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA-binding domains, Curr. Opin. Struct. Biol. 4, 1221.
  • 89
    Ohlendorf, D. H., Anderson, W. F., Lewis, M., Pabo, C. O. & Matthews, B. W. (1983) Comparison of the structures of cro and λ represser proteins from bacteriophage λ, J. Mol. Biol. 169, 757769.
  • 90
    Prywes, R. & Zhu, H. (1992) In vitro squelching of activated transcription by serum response factor: Evidence for a common co-activator used by multiple transcriptional activators, Nucleic Acids Res. 20, 513520.
  • 91
    Johansen, F.-E. & Prywes, R. (1993) Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs, Mol. Cell. Biol. 13, 46404647.
  • 92
    Liu, S.-H., Ma, J.-T., Yueh, A. Y., Lees-Miller, S. P., Anderson, C. W. & Ng, S.-Y. (1993) The carboxyl-terminal transactivation domain of human serum response factor contains DNA-activated protein kinase phosphorylation sites, J. Biol. Chem. 268, 2114721154.
  • 93
    Hill, C. S., Marais, R., John, S., Wynne, J., Dalton, S. & Treisman, R. (1993) Functional analysis of a growth factor-responsive transcription factor complex, Cell 73, 395406.
  • 94
    Hill, C. S., Wynne, J. & Treisman, R. (1994) Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA-binding domain, EMBO J. 13, 54215432.
  • 95
    Johansen, F.-E. & Prywes, R. (1994) Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor, Mol. Cell. Biol. 14, 59205928.
  • 96
    Tijan, R. & Maniatis, T. (1994) Transcriptional activation: a complex puzzle with few easy pieces, Cell 77, 58.
  • 97
    Manak, J. R. & Prywes, R. (1991) Mutation of serum response factor phosphorylation sites and the mechanism by which its DNA-binding activity is increased by casein kinase II, Mol. Cell. Biol. 11, 36523659.
  • 98
    Manak, J. R., de Bisschop, N., Kris, R. M. & Prywes, R. (1990) Casein kinase II enhances the DNA binding activity of serum response factor, Genes & Dev. 4, 955967.
  • 99
    Marais, R. M., Hsuan, J. J., McGuigan, C., Wynne, J. & Treisman, R. (1992) Casein kinase II phosphorylation increases the rate of serum response factor-binding site exchange, EMBO J. 11, 91105.
  • 100
    Janknecht, R., Hipskind, R. A., Houthaeve, T., Nordheim, A. & Stunnenberg, H. G. (1992) Identification of multiple SRF N-terminal phosphorylation sites affecting DNA binding properties, EMBOJ. 11, 10451054.
  • 101
    Keleher, C. A., Redd, M. J., Schultz, J., Carlson, M. & Johnson, A. D. (1992) Ssn6-Tupl is a general represser of transcription in yeast, Cell 68, 709719.
  • 102
    Herschbach, B. M., Arnaud, M. B. & Johnson, A. D. (1994) Transcriptional repression directed by the yeast α2 protein in vitro, Nature 370, 309311.
  • 103
    Tan, S., Ammerer, G. & Richmond, T. J. (1988) Interactions of purified transcription factors: binding of yeast MATα1 and PRTF to cell type-specific, upstream activating sequences, EMBO J. 7, 42554264.
  • 104
    Yuan, Y.-L. O., Stroke, I. L. & Fields, S. (1993) Coupling of cell identity to signal response in yeast: Interaction between the α1 and STE12 proteins, Genes & Dev. 7, 15841597.
  • 105
    Keleher, C. A., Passmore, S. & Johnson, A. D. (1989) Yeast repressor α2 binds to its operator cooperatively with yeast protein Mcm1, Mol. Cell. Biol. 9, 52285230.
  • 106
    Vershon, A. K. & Johnson, A. D. (1993) A short, disordered protein region mediates interactions between the homoedomain of the yeast α2 protein and the MCM1 protein, Cell 72, 105112.
  • 107
    Shore, P. & Sharrocks, A. D. (1994) The transcription factors Elk-1 and serum response factor interact by direct protein–protein contacts mediated by a short region of Elk-1, Mol. Cell. Biol. 14, 32833291.
  • 108
    Rao, V. N., Huebner, K., Isobe, M., Ab-Rushidi, A., Croce, C. M. & Reddy, E. S. P. (1989) elk, Tissue-specific ets -related genes on chromosomes X and 14 near translocation breakpoints, Science 44, 6670.
  • 109
    Lopez, M., Oettgen, P., Akbarali, Y., Dendorfer, U. & Libermann, T. A. (1994) ERP, a new member of the ets transcription factor/oncoprotein family: Cloning, characterization, and differential expression during B-lymphocyte development, Mol. Cell. Biol. 14, 32923309.
  • 110
    Giovane, A., Pintzas, A., Maira, S.-M., Sobieszczuk, P. & Wasylyk, B. (1994) Net, a new ets transcription factor that is activated by Ras, Genes & Dev. 8, 15021513.
  • 111
    Janknecht, R. & Nordheim, A. (1992) Elk-1 protein domains required for direct and SRF-assisted DNA-binding, Nucleic Acids Res. 20, 33173324.
  • 112
    Graham, R. & Oilman, M. (1991) Distinct protein targets for signals acting at the c-fos serum response element, Science 251, 189192.
  • 113
    Grueneberg, D. A., Natesan, S., Alexandre, C. & Oilman, M. Z. (1992) Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor, Science 257, 10891095.
  • 114
    Zhu, H., Joliot, V. & Prywes, R. (1994) Role of transcription factor TFIIF in serum response factor-activated transcription, J. Biol. Chem. 269, 34893497.
  • 115
    Yoshida, M. & Seiki, M. (1987) Recent advances in the molecular biology of HTLV-1: Trans -activation of viral and cellular genes, Annu. Rev. Immunol. 5, 541559.
  • 116
    Fujii, M., Tsuchiya, H., Chuhjo, T., Akizawa, T. & Seiki, M. (1992) Interaction of HTLV-1 Taxi with p67SRF causes the aberrant induction of cellular immediate early genes through CArG boxes, Genes & Dev. 6, 20662076.
  • 117
    Sommer, H., Beltran, J. P., Huijser, P., Pape, H., Lönnig, W. E., Saedler, H. & Schwarz, Zs. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors, EMBOJ. 9, 605613.
  • 118
    Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A. & Meyerowitz, E. M. (1990) The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors, Nature 346, 3539.
  • 119
    Pneuli, L., Abu-Abeid, M., Zamir, D., Nacken, W., Schwarz-Sommer, Z. & Lifschitz, E. (1991) The MADS box gene family in tomato: Temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis, Plant J. 1, 255266.
  • 120
    Mandel, M. A., Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1, Nature 360, 273277.
  • 121
    Jack, T., Brockman, L. L. & Meyerowitz, E. M. (1992) The homeotic gene APETALA3 of Arabidopsis thaniana encodes a MADS box and is expressed in petals and stamens, Cell 68, 683697.
  • 122
    Huijser, P., Klein, J., Lonnig, W.-E., Meijer, H., Saedler, H. & Sommer, H. (1992) Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene Squamosa in Antirrhinum majus, EMBO J. 11, 12391249.
  • 123
    Angenent, G. C., Busscher, M., Franken, J., Mol, J. N. M. & van Tunen, A. J. (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers, Plant Cell 4, 983993.
  • 124
    Mandel, M. A., Bowman, J. L., Kempin, S. A., Ma, H., Meyerowitz, E. M. & Yanofsky, M. F. (1992) Manipulation of flower structure in transgenic tobacco, Cell 71, 133134.
  • 125
    Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. (1993) Complementry floral homeotic phenotypes result from opposite orientations of a transposon at the Plena locus of Antirrhinum, Cell 72, 8595.
  • 126
    Hansen, G., Estruch, J. J., Sommer, H. & Spena, A. (1993) NTGLO: Tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus, cDNA sequence and expression pattern, Mol. Gen. Genet. 239, 310312.
  • 127
    Kempin, S. A., Mandel, M. A. & Yanofsky, M. F. (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1, Plant Physiol. 103, 10411046.
  • 128
    Tsuchimoto, S., van der Krol, A. R. & Chua, N.-H. (1993) Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant, Plant Cell 5, 843853.
  • 129
    Pneuli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F. & Lifschitz, E. (1994) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants, Plant Cell 6, 163173.
  • 130
    Kush, A., Brunelle, A., Shevell, D. & Chua, N.-H. (1993) The cDNA sequence of two MADS-box proteins in petunia, Plant Physiol. 102, 10511052.
  • 131
    Dubois, E., Bercy, J. & Messenguy, F. (1987) Characterization of two genes, ARGRI and ARGRII required for specific regulation of arginine metabolism in yeast, Mol. Gen. Genet. 207, 142148.