• Protein phosphatase 2A;
  • glycogen metabolism;
  • glycogen synthase;
  • glycogen phosphorylase;
  • yeast


  1. Top of page
  2. Abstract
  3. References

The yeast homologues of mammalian protein phosphatase 2A (PP2A) are encoded by two genes, PPH21 and PPH22. To evaluate the role of these phosphatases in the control of glycogen metabolism, wild-type cells and mutants carrying deletions of PPH21 or PPH22 were studied. Our results indicate that the lack of a single gene product does not result in significant changes in glycogen content, glycogen synthase, and glycogen phosphorylase activities. Since the double disruption is very detrimental to the cell, the effect of lack of PP2A was evaluated by using strain H336, which carries a deletion of the PPH21 gene and has the PPH22 gene placed under the control of the GAL1 promoter, under conditions that allowed either progressive depletion or overexpression of PPH22. When grown on galactose, H336 cells contain 2–3-fold more PP2A activity than control cells. After 14 h in glucose, however, PP2A activity in strain H336 is markedly reduced. The decrease in PP2A activity correlates with a reduced accumulation of glycogen and a more pronounced inactivation of glycogen synthase while glycogen phosphorylase becomes more resistant to inactivation. These observations suggest a role for PP2A in controlling the activation states of both enzymes. The total amount of phosphorylase was also higher in the PP2A-depleted cells, as determined by both enzymic and immunochemical techniques. However, Northern-blot analysis revealed that this is not due to an increase in the phosphorylase mRNA, which is in fact reduced in these cells. In contrast, overexpression of PP2A causes an increased expression of glycogen phosphorylase and a resulting failure to accumulate glycogen. We conclude that PP2A is involved in regulating both the amounts and the activation states of glycogen synthase and glycogen phosphorylase.


type 2A protein phosphatase


  1. Top of page
  2. Abstract
  3. References
  • 1
    Gancedo, C. & Serrano, R. (1989) Energy-yielding metabolism, in The yeasts (Rose, A. H. & Harrison, J. S., eds) vol. 3, 2nd edn, pp. 205259, Academic Press, New York .
  • 2
    Hwang, P. K., Tugendreich, S. & Fletterick, R. J. (1989) Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae, Mol. Cell. Biol. 9, 16591666.
  • 3
    Farkas, I., Hardy, T. A., DePaoli-Roach, A. A. & Roach, P. J. (1990) Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene, J. Biol. Chem. 265, 2087920886.
  • 4
    Farkas, I., Hardy, T. A., Goebl, M. G. & Roach, P. J. (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are encoded by distinct genes that are differentially controlled, J. Biol. Chem. 266, 1560215607.
  • 5
    Rothman-Denes, L. B. & Cabib, E. (1970) Two forms of yeast glycogen synthetase and their role in glycogen accumulation, Proc. Natl Acad. Sci. USA 66, 967974.
  • 6
    Rothman-Denes, L. B. & Cabib, E. (1971) Glucose-6-phosphate dependent and independent forms of yeast glycogen synthetase: their properties and interconversion, Biochemistry 10, 12361242.
  • 7
    Huang, K.-P. & Cabib, E. (1972) Separation of the glucose-6-phosphate independent and dependent forms of glycogen synthetase from yeast, Biochem. Biophys. Res. Commun. 49, 16101616.
  • 8
    François, J. & Hers, H.-G. (1988) The control of glycogen metabolism in yeast. 2. A kinetic study of the two forms of glycogen synthase and of glycogen phosphorylase and an investigation of their interconversion in a cell-free extract, Eur. J. Biochem. 174, 561567.
  • 9
    Fosset, M., Muir, L. W., Nielsen, L. D. & Fisher, E. H. (1971) Purification and properties of yeast glycogen phosphorylase a and b, Biochemistry 10, 41054113.
  • 10
    Becker, J. U., Wingerden-Drissen, R. & Schiltz, E. (1983) Purification and properties of glycogen phosphorylase from baker's yeast, Arch. Biochem. Biophys. 225, 667678.
  • 11
    Cameron, S., Levin, L., Zoller, M. & Wigler, M. (1988) cAMP independent control of sporulation, glycogen metabolism and heat-shock resistance in S. cerevisiae, Cell 53, 555566.
  • 12
    Holzer, H. (1987) Phosphoprotein phosphohydrolases from yeast, Adv. Prot. Phosphatases 4, 153164.
  • 13
    Mishra, C. (1983) Evidence for the occurrence of glycogen synthase phosphatases and kinases in yeast, FEMS Lett. 18, 2529.DOI: 10.1016/0378-1097(83)90128-3
  • 14
    Cohen, P., Schelling, D. L. & Stark, M. J. R. (1989) Remarkable similarities between yeast and mammalian protein phosphatases, FEBS Lett. 250, 601606.
  • 15
    Ohkura, H., Kinoshita, N., Miyatani, S., Toda, T. & Yanagida, M. (1989) The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases, Cell 57, 9971007.
  • 16
    Peng, Z., Trumbly, R. J. & Reimann, E. M. (1990) Purification and characterization of glycogen synthase from a glycogen-deficient strain of Saccharomyces cerevisiae, J. Biol. Chem. 265, 1387113877.
  • 17
    Hardy, T. A. & Roach, P. J. (1993) Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation, J. Biol. Chem. 268, 2379923805.
  • 18
    Clotet, J., Posas, F., Casamayor, A., Schaaff-Gerstenslager, I. & Ariñio, J. (1991) The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation, Curr. Genet. 19, 339342.
  • 19
    Posas, F., Clotet, J. & Ariño, J. (1991) S. cerevisiae gene SIT4 is involved in the control of glycogen metabolism, FEBS Lett. 279, 341345.DOI: 10.1016/0014-5793(91)80183-4
  • 20
    Peng, Z.-Y., Wang, W., Wilson, S. E., Schlender, K. K., Trumbly, R. J. & Reimann, E. M. (1991) Identification of a glycogen synthase phosphatase from yeast Saccharomyces cerevisiae as protein phosphatase 2A, J. Biol. Chem. 266, 1092510932.
  • 21
    Sneddon, A. A., Cohen, P. T. W. & Stark, M. J. R. (1990) Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes, EMBO J. 9, 43384346.
  • 22
    Ronne, H., Carlberg, M., Hu, G.-Z. & Nehlin, J. O. (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis, Mol. Cell. Biol. 11, 48764884.
  • 23
    van Zyl, W., Huang, W., Sneddon, A. A., Stark, M., Camier, S., Werner, M., Marck, C., Sentenac, A. & Broach, J. R. (1992) Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae, Mol. Cell. Biol. 12, 49464959.
  • 24
    Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., DePaoli-Roach, A. A. & Pringle, J. R. (1991) CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization and homology to the B subunit of the mammalian type 2A protein phosphatase, Mol. Cell. Biol. 11, 57675780.
  • 25
    Ingebritsen, T. S., Stewart, A. A. & Cohen, P. (1983) The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2A protein phosphatases in extracts of mammalian tissues and assessment of their physiological roles, Eur. J. Biochem. 132, 297307.
  • 26
    Hu, G.-Z. & Ronne, H. (1994) Overexpression of yeast PAM1 gene permits survival without protein phosphatase 2A and induces filamentous phenotype, J. Biol. Chem. 269, 34293435.
  • 27
    Corominas, J., Clotet, J., Fernández-Bañares, I., Boles, E., Zimmermann, F. K., Guinovart, J. J. & Ariño, J. (1992) Glycogen metabolism in a Saccharomyces cerevisiae phosphoglucose isomerase pgil disruption mutant, FEBS Lett. 310, 182186.
  • 28
    Fernández-Bañares, I., Clotet, J., Ariño, J. & Guinovart, J. J. (1991) Glycogen hyperaccumulation in Saccharomyces cerevisiae ras2 mutant: a biochemical study, FEBS Lett. 290, 3842.DOI: 10.1016/0014-5793(91)81220-3
  • 29
    Thomas, J. A., Schlender, K. K. & Larner, J. (1968) A rapid filter paper assay for UDPglucose-glycogen glucosyl transferase, including an improved biosynthesis of UDP-14C-glucose, Anal. Biochem. 25, 486499.
  • 30
    Gilboe, D. P., Larson, K. L., & Nuttall, F. Q. (1972) Radioactive method for the assay of glycogen phosphorylases, Anal. Biochem. 47, 2027.
  • 31
    Keppler, D. & Decker, K. (1974) UDP-glucose, in Methods in enzymatic analysis (Bergmeyer, H. U., ed.) vol. 4, pp. 524529, Verlag Chemie.
  • 32
    Sherman, F., Fink, G. R. & Hicks, J. B. (1986) Methods in yeast genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor , NY .
  • 33
    Gallwitz, D. & Sures, I. (1980) Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae, Proc. Natl Acad. Sci. USA 77, 25462550.
  • 34
    Layne, E. (1957) Spectrophotometric and turbidimetric methods for measuring proteins, Methods Enzymol. 3, 450451.
  • 35
    Sneddon, A. A. & Stark, M. J. R. (1991) Yeast protein serine-threonine phosphatase genes and cell division cycle control, Adv. Prot. Phosphatases 6, 307330.
  • 36
    Wadzinski, B. E., Elsfelder, B. J., Peruski, L. F. Jr, Mumby, M. C. & Johnson, G. L. (1992) NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells, J. Biol. Chem. 267, 1688316888.
  • 37
    Alberts, A. S., Deng, T., Lin, A., Meinkoth, J. L., Schönthal, A., Mumby, M. C., Karin, M. & Feramisco, J. R. (1993) Protein phosphatase 2A potentiates activity of promoters containing AP-1-binding elements, Mol. Cell. Biol. 13, 21042112.
  • 38
    Wadzinski, B. E., Wheat, W. H., Jaspers, S., Peruski, L. F. Jr, Lickteig, R. L., Johnson, G. L. & Klemm, D. J. (1993) Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation, Mol. Cell. Biol. 13, 28222834.
  • 39
    Arndt, K. T., Styles, C. A. & Fink, G. R. (1989) A supressor of the HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases, Cell 56, 527537.
  • 40
    Neighbron, L. & Carlson, M. (1987) Mutations causing constitutive invertase synthesis in yeast: genetic interactions within snf mutations, Genetics 115, 247253.
  • 41
    Johnston, M. & Carlson, M. (1992) Regulation of carbon and phosphate utilization in The molecular and cellular biology of the yeast Saccharomyces (Jones, E. W., Pringle, J. R. & Broach, J. R., eds) vol. 2, pp. 193281, Cold Spring Harbor Laboratory Press, Cold Spring Harbor , NY .
  • 42
    François, J. M., Thompson-Jaeger, S., Skroch, J., Zellenka, U., Spevak, W. & Tatchell, K. (1992) GAC1 may encode a regulatory subunit of protein phosphatase type 1 in Saccharomyces cerevisiae, EMBOJ. 11, 6796.
  • 43
    Rowen, D. W., Meinke, M. & LaPorte, D. C. (1992) GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme, Mol. Cell. Biol. 12, 2229.
  • 44
    Thon, V. J., Vignerons-Lesens, C., Marianne-Pepin, T., Montreuil, J., Decq, A., Rachez, C., Ball, S. G. & Cannon, J. F. (1992) Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae, J. Biol. Chem. 267, 1522415228.
  • 45
    Feng, Z., Wilson, S. E., Peng, Z.-Y., Schlender, K. K., Reimann, E. M. & Trumbly, R. J. (1991) The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase, J. Biol. Chem. 266, 2379623801.
  • 46
    Posas, F., Clotet, J., Muns, M. T., Corominas, J., Casamayor, A. & Ariño, J. (1993) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation, J. Biol. Chem. 268, 13491354.