SEARCH

SEARCH BY CITATION

Keywords:

  • erythropoietin receptor;
  • mitogen-activated kinases;
  • RAF-1;
  • Grb2;
  • Shc

Abstract

  1. Top of page
  2. Abstract
  3. References

The survival and proliferation of the UT-7 human leukemic cell line is strictly dependent on the presence of either interleukin 3, granulocyte-macrophage colony-stimulating factor or erythropoietin. In these cells, erythropoietin stimulation led to the rapid phosphorylation of several proteins including the erythropoietin receptor and proteins with molecular masses around 45 kDa which could be rnitogen-activated protein (MAP) kinases. Separation of cytosol from resting or erythropoietin-stimulated UT-7 cells by anion-exchange chromatography revealed two peaks of myelin basic protein kinase activity. The kinase activity of the first peak was independent of erythropoietin treatment of the cells and corresponded to an unidentified 50-kDa kinase, whereas the second peak was only present in erythropoietin-stimulated cells and corresponded to three forms of MAP kinases with molecular masses of 45, 44 and 42 kDa. The three forms were separated by hydrophobic chromatography and were shown to be activated in erythropoietin-stimulated cells. The 44-kDa and 42-kDa forms corresponded to extracellular signal-regulated kinase (ERK)-1 and ERK-2, respectively. Evidence was obtained showing that the 45-kDa form is not a shifted form of ERK-1 but corresponded to a less well defined form of MAP kinase which may be the previously described ERK-4. MAP kinase activation was detected after 1 min erythropoietin stimulation and remained detectable after more than 1 hour. A role for MAP kinase activation in erythropoietin-stimulated cell proliferation was suggested by the simultaneous inhibition of erythropoietin-induced MAP kinase stimulation and cell proliferation. The potential activator of MAP kinase, RAF-1, was hyperphos-phorylated in erythropoietin-stimulated cells and its autophosphorylation activity was strongly increased. The protein adaptor Shc was heavily phosphorylated in UT-7 erythropoietin-stimulated cells and associated strongly with a unidentified 145-kDa protein. However, She bound poorly to the activated erythropoietin receptor and most She proteins were cytosolic in both unstimulated and erythropoietin-stimulated cells. In contrast, Grb2 associated efficiently with the activated erythropoietin receptor and a significant part of Grb2 was associated to a particulate subcellular fraction upon erythropoietin stimulation.

Abbreviations
GM-CSF

granulocyte-monocyte colony-stimulating factor

MAP

mitogen-activated protein

MBP

myelin basic protein

ERK

extracellular signal-regulated kinase

References

  1. Top of page
  2. Abstract
  3. References
  • 1
    Koury, M. J. & Bondurant, M. C. (1992) The molecular mechanism of erythropoietin action, Eur. J. Biochem. 210. 649663.
  • 2
    D'Andrea, A. D., Wong, G. G. & Lodish, H. F. (1989) Expression cloning of the erythropoietin receptor, Cell 57, 277285.
  • 3
    Bazan, J. F. (1990) Structural design and molecular evolution of a cytokine receptor superfamily, Proc. Natl Acad. Sci. USA 87, 69346938.
  • 4
    Stahl, N. & Yancopoulos, G. D. (1993) The alpha, betas and kinases of cytokine receptor complexes, Cell 74, 587590.
  • 5
    Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O. & Ihle, J. N. (1993) Jak2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin, Cell 74, 227236.
  • 6
    Zhuang, H., Patel, S. V., He, T. C., Sonstebys, S. K., Niu, Z. & Wojchowski, D. M. (1994) Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2, J Biol. Chem. 269, 2141121414.
  • 7
    He, T. C., Jiang, N., Zhuang, H., Quelle, D. E. & Wojchowski, D. M. (1994) The extended box 2 subdomain of erythropoietin receptor is nonessential for Jak2 activation yet critical for efficient mitogenesis in FDCP-ER cells, J. Biol. Chem. 269, 1829118294.
  • 8
    Dusanter-Fourt, I., Casadevall, N., Lacombe, C., Muller, O., Billat, C., Fischer, S. & Mayeux, P. (1992) Erythropoietin induces the tyrosine phosphorylation of its own receptor in human erythropoietin-responsive cells, J. Biol. Chem. 267, 1067010675.
  • 9
    Miura, O., D'Andrea, A. D., Kabat, D. & Ihle, J. N. (1991) Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis, Mol. Cell. Biol. 11, 48954902.
  • 10
    Yoshimura, A. & Lodish, H. F. (1992) In vitro phosphorylation of the erythropoietin receptor and an associated protein pp130, Mol. Cell. Biol. 12, 706715.
  • 11
    Damen, J., Mui, A. L. F., Humphries, K. & Krystal, G. (1992) Erythropoietin-induced tyrosine phosphorylations in a high erythropoietin receptor-expressing lymphoid cell line, Blood 80, 19231932.
  • 12
    Damen, J. E., Liu, L., Cutler, R. L. & Krystal, G. (1993) Erythropoietin stimulates the tyrosine phosphorylation of She and its association with Grb2 and a 145-Kd tyrosine phosphorylated protein, Blood 82, 22962303.
  • 13
    Ren, H. Y., Komatsu, N., Shimizu, R., Okada, K. & Miura, Y. (1994) Erythropoietin induces tyrosine phosphorylation and activation of phospholipase C-1 in a human erythropoietin-dependent cell line, J. Biol. Chem. 269, 1963319638.
  • 14
    Torti, M., Marti, K. B., Altschuler, D., Yamamoto, K. & Lapetina, E. G. (1992) Erythropoietin induces p21ras activation and p120 GAP tyrosine phosphorylation in human erythroleukemia cells, J. Biol. Chem. 267, 82938298.
  • 15
    Mayeux, P., Dusanter-Fourt, I., Muller, O., Mauduit, P., Sabbah, M., Druker, B., Vainchenker, W., Fischer, S., Lacombe, C. & Gisselbrecht, S. (1993) Erythropoietin induces the association of phos-phatidylinositol 3′-kinase with a tyrosine-phosphorylated complex containing the erythropoietin receptor, Eur. J. Biochem. 216, 821828.
  • 16
    He, T. C., Zhuang, H., Jiang, N., Waterfield, M. D. & Wojchowski, D. M. (1993) Association of the p85 regulatory subunit of phos-phatidylinositol 3-kinase with an essential erythropoietin receptor subdomain. Blood 82, 35303538.
  • 17
    Damen, J. E., Mui, A. L. F., Puil, L., Pawson, T. & Krystal, G. (1993) Phosphatidylinositol 3-kinase associates, via its Src homology domains with the activated erythropoietin receptor, Blood 81, 32043210.
  • 18
    Miura, O., Nakamura, N., Ihle, J. N. & Aoki, N. (1994) Erythropoietin-dependent association of phosphatidylinositol 3-kinase with tyrosine-phosphorylated erythropoietin receptor, J. Biol. Chem. 269, 614620.
  • 19
    Pelech, S. L. & Sanghera, J. S. (1992) Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem. Sci. 17, 233238.
  • 20
    Seger, R., Ahn, N. G., Posada, J., Munar, E. S., Jensen, A. M., Cooper, J. A., Cobb, M. H. & Krebs, E. G. (1992) Purification and characterization of mitogen-activated protein kinase activator(s) from Epidermal Growth Factor-stimulated A431 cells, Biol. Chem. 267, 1437314381.
  • 21
    Matsada, S., Kosado, H., Takenaka, K., Moriyama, K., Sakai, H., Akaiyama, T., Gotoh, Y. & Nishida, E. (1992) Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade, EMBO J. 11, 973982.
  • 22
    Crews, C. M., Alessandrini, A. A. & Erickson, R. L. (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product, Science 258, 478480.
  • 23
    Lange-Carter, C., Pleiman, C., Gardner, A., Blumer, K. & Jonhson, G. (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf, Science 260, 315320.
  • 24
    Koide, H., Satoh, T., Nakafuku, M. & Kaziro, Y. (1993) GTP-dependent association of RAF-1 with Ha-Ras: identification of Raf as a target downstream of ras in mammalian cells, Proc. Natl Acad. Sci. USA 90, 86838686.
  • 25
    Zhang, X. F., Settleman, J., Kyriakis, J. M., Takeuchi-Suzuki, E., Elledge, S. J., Marshall, M. S., Bruder, J. T., Rapp, U. R. & Avruch, J. (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1, Nature 364, 308313.
  • 26
    Warne, P. H., Viciana, P. R. & Downward, J. (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro, Nature 364, 352355.
  • 27
    Lowenstein, E. J., Daly, R. J., Batzer, A. G., Li, W., Margolis, R., Lammers, R., Ullrich, A., Skolnick, E. Y., Bar-Sagi, D. & Schles-singer, J. (1992) The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to ras signaling, Cell 70, 431442.
  • 28
    Chardin, P., Camonis, J. H., Gale, N. W., van Aesst, L., Schlessinger, J., Wigler, M. H. & Bar-Sagi, D. (1993) Human SOS1: a guanine nucleotide exchange factor for Ras that binds to Grb2, Science 260, 13381343.
  • 29
    Pelicci, G., Lanfrancone, L., Grigani, J., McGlade, J., Cavallo, F., Forni, G., Nicoletti, I., Pawson, T. & Pelicci, P. G. (1992) A novel transforming protein (SHC) with an SH domain is implicated in mitogenic signal transduction, Cell 70, 93104.
  • 30
    Pages, G., Lenormand, P., L'Allemain, G., Chambard, J. C., Meloche, S. & Pouyssegur, J. (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation, Proc. Nail Acad. Sci. USA 90, 83198323.
  • 31
    Okuda, K., Sanghera, J. S., Pelech, S. L., Kanakura, Y., Hallek, M., Griffin, J. D. & Druker, B. J. (1992) Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-3 and Steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase, Blood 79, 28802887.
  • 32
    Raines, M. A., Golde, D. W., Daiepour, M. & Nel, A. E. (1992) Granulocyte-Macrophage Colony-Stimulating Factor activates microtubule-associated protein 2 kinase in neutrophils via a tyrosine kinase-dependent pathway, Blood 79, 33503354.
  • 33
    Welham, M. J., Duronio, V., Sanghera, J. S., Pelech, S. L. & Schrader, J. W. (1992) multiple hemopoietic growth factors stimulate activation of mitogen-activated protein kinase familly members, J. Immunol. 149, 16831693.
  • 34
    Miyazawa, K., Hendrie, P. C., Mantel, C., Wood, K., Ashman, L. K. & Broxmeyer, H. E. (1991) Comparative analysis of signaling pathways between mast cell growth factor (c-kit ligand) and granulocyte-macrophage colony-stimulating factor in a human factor-dependent myeloid cell line involves phosphorylation of Raf-1, GTPase-activating protein and mitogen-activated protein kinase, Exp. Hematol. 19, 11101123.
  • 35
    Gomez-Cambronero, J., Huang, C. K., Gomez-Cambronero, T., Waterman, W. H., Becker, E. L. & Sha'afi, R. I. (1992) Granulocyte-Macrophage Colony-Stimulating Factor-induced protein tyrosine phosphorylation of microtubule-associated protein kinase in human neutrophils, Proc. Natl Acad. Sci. USA 89 . 75517555.
  • 36
    Yin, T. & Yang, Y. C. (1994) Mitogen-activated protein kinases and ribosomal S6 protein kinases are involved in signaling pathways shared by Interleukin-11, Interleukin-6, Leukemia Inhibitory Factor and Oncostatin M in mouse 3T3-L1 cells, J. Biol. Chem. 269, 37313738.
  • 37
    Pignata, C., Sanghera, J. S., Cossette, L., Pelech, S. L. & Ritz, J. (1994) Interleukin-12 induces tyrosine phosphorylation and activation of 44 kD mitogen-activated protein kinase in human T cells, Blood 83, 184190.
  • 38
    Bashey, A., Healy, L. & Marshall, C. J. (1994) Proliferative but not nonproliferative responses to granulocyte colony-stimulating factor are associated with rapid activation of the p21 ras/MAP kinase signalling pathway. Blood 83, 949957.
  • 39
    Amaral, M. C., Miles, S., Kumar, G. & Nel, A. E. (1993) Oncostatin-M stimulates tyrosine protein phosphorylation in parallel with the activation of p42 MAPK/erk-2 in Kaposi's cells evidence that this pathway is important in Kaposi cell growth, J. Clin. Invest. 92, 848857.
  • 40
    Vallee, R. B. (1982) A Taxol-dependent procedure for the isolation of microtubules and MAPs, J. Cell Biol. 92, 435442.
  • 41
    Komatsu, N., Nakauchi, H., Miwa, A., Ishihara, T., Eguchi, M., Moroi, M., Okada, M., Sato, Y., Wada, H., Yawata, Y., Suda, T. & Miura, Y. (1991) Establishment and characterization of a human leukemic cell line with megakaryocytic features – Dependency on granulocyte-macrophage colony-stimulating factor, interleu-kin-3 or erythropoietin for growth and survival, Cancer Res. 51, 341348.
  • 42
    Ray, L. B. & Sturgill, T. W. (1988) Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc. Natl Acad. Sci USA 85 . 37533757.
  • 43
    Casillas, A. M., Amaral, K., Chegini-Farahani, S. & Nel, A. E. (1993) Okadaic acid activates p42 mitogen-activated protein kinase (MAP kinase; ERK-2) in B-lymphocytes but inhibits rather than augments cellular proliferation: contrast with phorbol 12-myristate 13-acetate, Biochem. J. 290, 545550.
  • 44
    Morrison, D. K., Kaplan, D. R., Rapp, U. R. & Roberts, T. M. (1988) Signal transduction from membrane to cytoplasm: growth factors and membrane-bound oncogene products increase RAF-1 phosphorylation and associated protein kinase activity, Proc. Natl Acad. Sci. USA 85, 88558859.
  • 45
    Williams, N. G., Roberts, T. M. & Li, P. (1992) Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the RAF-1 kinase, Proc. Natl Acad. Sci. USA 89, 29222926.
  • 46
    Cook, S. J. & McCormick, F. (1993) Inhibition by cAMP of Ras-dependent activation of Raf, Science 262, 10691072.
  • 47
    Wu, J., Dent, P., Jelinek, T., Wolfman, A., Weber, M. J. & Sturgill, T. W. (1993) Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate, Science 262, 10651069.
  • 48
    Svetson, B. R., Kong, X. & Lawrence, J. C. (1993) Increasing cAMP attenuates activation of mitogen-activated protein kinase, Proc. Natl Acad. Sci. USA 90, 1030510309.
  • 49
    Burgering, B., Pronk, G. J., Weeren, P. C., Chardin, P. & Bos, J. L. (1993) cAMP antagonizes p21 ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor, EMBO J. 12, 42114220.
  • 50
    Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H. & Yancopoulos, G. D. (1991) ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF, Cell 65, 663675.
  • 51
    Boulton, T. G. & Cobb, M. H. (1991) Identification of multiple extracellular signal-regulated kinases (ERK) with antipeptide antibodies, Cell Regul. 2, 278286.
  • 52
    Casillas, A., Hanekom, C., Williams, K., Katz, R. & Nel, A. E. (1991) Stimulation of B-cells via the membrane immunoglobulin receptor or with phorbol myristate 13-acetate induces tyrosine phosphorylation and activation of a 42 kDa microtubule associated protein-2 kinase, J. Biol. Chem. 266, 1908819094.
  • 53
    Kahan, C., Seuwen, K., Meloche, S. & Pouyssegur, J. (1992) Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts, J. Biol. Chem. 267, 1336913375.
  • 54
    Meloche, S., Seuwen, K., Pagès, G., Cobb, M. H. & Pouyssegur, J. (1992) Biphasic and synergistic activation of p44 mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity, Mol. Endocrinol. 6, 845854.
  • 55
    Wehlam, M. J., Duronio, V. & Schrader, J. W. (1994) Interleukin-4-dependent proliferation dissociates p44eck-1, p42crk-2, and p21ras activation from cell proliferation, J. Biol. Chem. 269, 58655873.
  • 56
    Perkins, G. R., Marvel, J. & Collins, M. K. (1993) Interleukin 2 activates extracellular signal-regulated proteinkinase 2, J. Exp. Med. 178, 14291434.
  • 57
    Kuo, C. J., Chung, J., Fiorenttino, D. F., Flanagan, W. M., Blenis, J. & Crabtree, G. R. (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase, Nature 358, 7073.
  • 58
    Sakamaki, K., Miyajima, I., Kitamura, T. & Miyajima, A. (1992) Critical cytoplasmic domains of the common β subunit of the human GM-CSF, interleukin-3 and interleukin-5 receptors for growth signal transduction and tyrosine phosphorylation, EMBO J. 11, 35413549.
  • 59
    Miura, Y., Miura, O., Ihle, J. N. & Aoki, N. (1994) Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor, J. Biol. Chem. 269, 2996229969.
  • 60
    Carroll, M. P., Spivak, J. L., McMahon, M., Weich, N., Rapp, U. R. & May, W. S. (1991) Erythropoietin induces Raf-1 activation and Raf-1 is required for erythropoietin-mediated proliferation, J. Biol. Chem. 266, 1496414969.
  • 61
    Songyang, Z., Shoelson, S. E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X. R., Barbacid, M., Sabe, H., Hanafusa, H., Yi, T., Ren, R., Baltimore, D., Ratnofsky, S., Feldman, R. A. & Cantley, L. C. (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, Grb2, HCP, SHC, Syk and Vav, Mol. Cell. Biol. 14, 27772785.