• cellobiohydrolase II (Trichoderma reesei);
  • cello-oligosaccharide hydrolysis;
  • progress curves;
  • NMR;
  • HPLC


  1. Top of page
  2. Abstract
  3. References

The hydrolysis of soluble cello-oligosaccharides, with a degree of polymerisation of 4–6, catalysed by cellobiohydrolase II from Trichoderma reesei was studied using 1H-NMR spectroscopy and HPLC. The experimental progress curves were analysed by fitting numerically integrated kinetic equations, which provided cleavage patterns and kinetic constants for each oligosaccharide. This analysis procedure accounts for product inhibition and avoids the initial slope approximation. No glucose was detected at the beginning of the reaction indicating that only the internal glycosidic linkages are attacked. For cellotetraose only the second glycosidic linkage was cleaved. For cellopentaose and cellohexaose the second and the third glycosidic linkage from the non-reducing end were cleaved with approximately equal probability. The degradation rates of these cello-oligosaccharides, 1–12 s−1 at 27°C, are about 10–100 times faster than for the 4-methylumbelliferyl substituted analogs or for cellotriose. No intermediate products larger than cellotriose were released. The degradation rate for cellotetraose were higher than its off-rate, which accounts for the processive degradation of cellohexaose. A high cellohexaose/enzyme ratio caused slow reversible inactivation of the enzyme.


cellobiohydrolase II

Glcnn= 1–6

d-glucose and 1,4-β-d-glucosides from the cello-oligosaccharide series (cellobiose to cellohexaose)


Cellobiohydrolase II, 1,4-β-glucan cellobiohydrolase (EC


  1. Top of page
  2. Abstract
  3. References
  • 1
    Nevalainen, H. & Penttilä, M. (1995) Molecular biology of cellulolytic fungi, in The Mycota II. Genetics and biotechnology (Kück, U., ed.) pp. 303319, Springer-Verlag, Berlin .
  • 2
    Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K. C. & Jones, T. A. (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei, Science 249, 380386.
  • 3
    Divne, C., Stålhberg, J., Reinikainen, T., Ruohonen, L., Petterson, G., Knowles, J. K. C., Teeri, T. T. & Jones, T. A. (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei, Science 265, 524528.
  • 4
    Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Petterson, G., Knowles, J. K. C. & Gronenborn, A. M. (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing, Biochemistry 28, 72417257.
  • 5
    Rouvinen, J. (1990) Three dimensional structure and function of cellobiohydrolase II, Doctoral thesis, University of Joensuu, Finland .
  • 6
    Claeyssens, M. & Henrissat, B. (1992) Specificity mapping of cellulolytic enzymes: Classification into families of structurally related proteins confirmed by biochemical analysis, Protein Sci. 1, 12931297.
  • 7
    Knowles, J. K. C., Lehtovaara, P., Murray, M. & Sinnott, M. L. (1988) Stereochemical course of the action of cellobioside hydrolases I and II of Trichoderma reesei, J. Chem. Soc. Chem. Commun. 14011402.
  • 8
    Ruohonen, L., Koivula, A., Reinikainen, T., Valkeajärvi, A., Teleman, A., Claeyssens, M., Szardenings, M., Jones, T. A. & Teeri, T. T. (1993) Active site of T. reesei cellobiohydrolase II, in Trichoderma reesei cellulases and other hydrolases (Suominen, P. & Reinikainen, T., eds) pp. 8796, Foundation for Biotechnology and Industrial Fermentation Research, Helsinki .
  • 9
    van Tilbeurgh, H., Pettersson, G., Bhikabhai, R., De Boeck, H. & Claeyssens, M. (1985) Studies of the cellulolytic system of Trichoderma reesei. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-β-glucan cellobiohydrolase II, Eur. J. Biochem. 148, 329334.
  • 10
    van Tilbeurgh, H., Loontiens, F. G., Engelborgs, Y. & Claeyssens, M. (1989) Studies of the cellulolytic system of Trichoderma reesei. Binding of small ligands to the 1,4-β-d-glucan cellobiohydrolase II and influence of glucose on their affinity, Eur. J. Biochem. 184, 553559.
  • 11
    Withers, S. G., Dombroski, D., Berven, L. A., Kilburn, D. G., Miller, R. C. Jr, Warren, R. A. J. & Gilkes, N. R. (1986) Direct 1H NMR determination of the stereochemical course of hydrolyses catalysed by glucanase components of the cellulase complex, Biochem. Biophys. Res. Commun. 139, 487494.
  • 12
    Teleman, A., Koivula, A., Reinikainen, T., Valkeajärvi, A., Teeri, T., Drakenberg, T. & Teleman, O. (1995) Progress-curve analysis shows that glucose inhibits the cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei, Eur: J. Biochem. 231, 250258.
  • 13
    Frieden, C. (1993) Numerical integration of rate equations by computer, Trends Biochem. Sci. 18, 5860.
  • 14
    Duggleby, R. G. (1994) Analysis of progress curves for enzyme-catalyzed reactions: Application to unstable enzymes, coupled reactions and transient-state kinetics, Biochim. Biophys. Acta 1205, 268274.
  • 15
    Harjunpää, V., Teleman, A., Siika-aho, M. & Drakenberg, T. (1995) Kinetic and stereochemical studies of manno-oligosaccharide hydrolysis catalysed by β-mannanases from Trichoderma reesei, Eur. J. Biochem. 234, 278283.
  • 16
    Reinikainen, T., Henriksson, K., Siika-aho, M., Teleman, O. & Poutanen, K. (1995) Low-level endoglucanase contamination in a Trichoderma reesei cellobiohydrolase II preparation affects its enzymatic activity on β-glucan, Enzyme Microb. Technol. 17, 888892.
  • 17
    Braunschweiler, L., Bodenhausen, G. & Ernst, R. R. (1983) Analysis of networks of coupled spins by multiple quantum n.m.r., Mol. Phys. 48, 535560.
  • 18
    Pigman, W. & Horton, D. (1972) The carbohydrates chemistry and biochemistry IA, 2nd edn, pp. 165194, Academic Press, London .
  • 19
    Ikura, M. & Hikichi, M. (1987) Two-dimensional proton NMR studies of cello-oligosaccharides. The utility of multiple-relay chemical-shift-correlated spectroscopy, Carbohydr: Res. 163, 18.
  • 20
    Davies, G. & Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases, Structure 3, 853859.
  • 21
    Henriksson, K., Teleman, A., Suortti, T., Reinikainen, T., Jaskari, J., Teleman, O. & Poutanen, K. (1995) Hydrolysis of barley (1[RIGHTWARDS ARROW]3),(1[RIGHTWARDS ARROW]4)-β-d-glucan by a cellobiohydrolase II preparation from Trichoderma reesei, Carbohydr: Polymers 26, 109119.
  • 22
    Biély, P., Vrsanska, M. & Claeyssens, M. (1993) Mode of action of Trichoderma reeseiβ-4-glucanases on cello-oligosaccharides, in Trichoderma reesei cellulases and other hydrolases (Suominen, P. & Reinikainen, T., eds) pp. 99108, Foundation for Biotechnology and Industrial Fermentation Research, Helsinki .
  • 23
    Barr, B., Hsieh, Y.-L., Ganem, B. & Wilson, D. B. (1995) Identification of two functionally different classes of exocellulases, Biochemistry 35, 586592.
  • 24
    Claeyssens, M., van Tilbeurgh, H., Tomme, P., Wood, T. M. & McRae, S. I. (1989) Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei, Biochem. J. 261, 819825.
  • 25
    Schou, C., Rasmussen, G., Kaltoft, M., Henrissat, B. & Schülein, M. (1993) Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases, Eur. J. Biochem. 217, 947953.
  • 26
    Nidetsky, B., Zachariae, W., Gercken, G., Hayn, M. & Steiner, W. (1994) Hydrolysis of cello-oligosaccharides by Trichoderma reesei cellobiohydrolases; experimental data and kinetic modelling, Enzyme Microb. Technol. 16, 4352.