SEARCH

SEARCH BY CITATION

Keywords:

  • human immunodeficiency virus type 1;
  • integrase;
  • synthetic peptide;
  • circular dichroism;
  • inhibition

Abstract

  1. Top of page
  2. Abstract
  3. References

Integration of the human immunodeficiency virus (HIV-1) DNA into the host genome is catalysed by a virus-encoded protein integrase. Here, we report some of the structural and functional properties of two synthetic peptides: integrase-(147–175)-peptide reproducing the residues 147–175 (SQGVVESMNKELK159KIIGQVRDQAEHLKTAY) of the HIV-1 integrase, and [Pro159] integrase-(147–175)-peptide where the lysine 159 is substituted for a proline. Circular dichroism revealed that both peptides are mostly under unordered conformation in aqueous solution, contrasting with the α-helix exhibited by residues 147–175 in the protein crystal structure. In a weak α-helix-promoting environment, integrase-(147–175)-peptide self-associated into stable coiled-coil oligomers, while [Pro159] integrase-(147–175)-peptide did not. This property was further confirmed by cross-linking experiments. In our in vitro experiments, only integrase-(147–175)-peptide was able to reduce the integration activity of the enzyme. We propose that the inhibitory activity shown by integrase-(147–175)-peptide is dependent on its ability to bind to its counterpart in integrase through a peptide-protein coiled-coil structure disturbing the catalytic properties of the enzyme.

Abbreviations
ASV

avian sarcoma virus

HIV

human immunodeficiency virus

LTR

long terminal repeat

ESI-MS

eletrospray-ionisatiou mass spectrometry

References

  1. Top of page
  2. Abstract
  3. References
  • Baldwin, R.I., (1986) Seeding protein folding, Trends Biochem. Sci. 11, 69.
  • Barré-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M. T., Chamaret, S., Gruest, J., Dauget, C., Axler-Blin, C., Vézinet-Brun, F., Rouzioux, C., Rozenbaum, W. & Montagnier, L. (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science 220, 868870.
  • Berger, B., Wilson, D. B., Wolf, E., Tonchev, T., Milla, M. & Kim, P. S. (1995) Predicting coiled-coils by use of pairwise residue correlations, Proc. Natl Acad. Sci. USA 92, 82598263.
  • Biou, V., Gibrat, J.-F., Levin, J., Robson, B. & Garnier, J. (1988) Secondary structure prediction: combination of three different methods, Protein Eng. 2, 185191.
  • Blum, H., Beier, H. & Gross, H. J. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels, Electrophoresis 8, 9399.
  • Bouziane, M., Cherny, D. L., Mouscadet, J. F. & Auclair, C. (1996) Alternate-strand DNA triple helix-mediated inhibition of HIV-1 US long terminal repeat integration in vitro, J. Biol. Chem. 17, 1035910364.
  • Bujacz, G., Jaskolski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R. A. & Skalka, A. M. (1995) High-resolution structure of the catalytic domain of avian sarcoma virus integrase, J. Mol. Biol. 253, 333346.
  • Bujacz, G., Jaskolski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R. A. & Skalka, A. M. (1996) The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations, Structure (Lond.) 4, 8996.
  • Burke, C. J., Sanyal, G., Bruner, M. W., Ryan, J. A., LaFemina, R. L., Robbins, H. L., Zeft, A. S., Russel Middaugh, C. & Cordingley, M. G. (1992) Structural implications of spectroscopic characterisation of a putative zinc finger peptide from HIV-1 integrase, J Biol. Chem. 267, 96389644.
  • Bushman, F. D. & Craigie, R. (1991) Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA, Proc. Natl Acad. Sci. USA 88, 13391343.
  • Bushman, F. D., Engelman, A., Palmer, I., Wingfield, P. & Craigie, R. (1993) Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding, Proc. Natl Acad. Sci. USA 90, 34283432.
  • Cannon, P. M., Wilson, W., Byles, E., Kingsman, S. M. & Kingsman, A. J. (1994) Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues, J. Virol. 68, 47684775.
  • Carteau, S., Mouscadet, J. F., Goulaouic, H., Subra, R. & Auclair, C. (1993) Quantitative in vitro assay for human immunodeficiency virus deoxyribonucleic acid integration, Arch. Biochem. Biophys. 300, 756760.
  • Cohen, C. & Parry, D. A. D. (1990) α-Helical coiled-coils and bundles: how to design an α-helical protein, Proteins 7, 115.
  • Cooper, T. M. & Woody, R. W. (1990) The effect of conformation on the CD of interacting helices: a theoretical study of tropomyosin, Biopolymers 30, 657676.
  • De Clercq, E. (1995) Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections, J. Med. Chem. 14, 24912517.
  • Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases, Science 266, 19811986.
  • Eijkelenboom, A. P. A. M., Puras Lutzke, R. A., Boelems, R., Plasterk, R. H. A., Kaptein, R. & Hard, K. (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold, Nat. Struct. Biol. 2, 807810.
  • Engelman, A., Mizuuchi, K. & Craigie, R. (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer, Cell 67, 12111221.
  • Engelman, A., Bushman, R. D. & Craigie, R. (1993) Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex, EMBO J. 12, 32693275.
  • Frère, V., Sourgen, F., Monnot, M., Troalen, R. & Fermandjian, S. (1995) A peptide fragment of human DNA topoisomerase II a forms a stable coiled-coil structure in solution, J. Biol. Chem. 270, 1750217507.
  • Garnier, J., Osguthorpe, D. J. & Robson, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120, 97120.
  • Goff, S. P. (1992) Genetics of retroviral integration, Annu. Rev. Cell. Biol. 26, 527544.
  • Grindley, N. D. F. & Leschziner, A. E. (1995) DNA transposition: from a black box to a color monitor, Cell 83, 10631066.
  • Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. (1993) A switch between two, three and four stranded coiled-coils in GCN4 leucine zipper mutants, Science 262, 14011407.
  • Hazuda, D. J., Wolfe, A. L., Hastings, J. C., Robbins, H. L., Graham, P. L., LaFemina, R. L. & Emini, E. A. (1994) Viral long terminal repeat substrate binding characteristics of the human immunodeficiency virus type I integrase, J. Biol. Chem. 269, 39994004.
  • Hickman, A. B., Palmer, I., Engelman, A., Craigie, R. & Wingfield, P. (1994) Biophysical and enzymatic properties of the catalytic domain of HIV-1 integrase, J. Biol. Chem. 269, 2927929287.
  • Hodges, R. S., Sodek, J., Smillie, L. B. & Jurasek, L. (1972) Tropomyosins: amino acid sequence and coiled-coil structure, Cold Spring Harbor Symp. Quant. Biol. 37, 299310.
  • Holtzer, M. E. & Holtzer, A. (1995) The use of spectral decomposition via the convex constraint algorithm in interpreting the CD-observed unfolding transitions of coiled-coils, Biopolymers 36, 365379.
  • Jaenicke, R. & Rudolph, R. (1986) Refolding and association of oligomeric proteins, Methods Enzymol. 131, 218250.
  • Jenkins, T. M., Engelman, A., Ghirlando, R. & Craigie, R. (1996) A soluble active mutant of HIV-1 integrase, J. Biol. Chem. 271, 77127718.
  • Johnson, W. C. Jr (1990) Protein secondary structure and circular dichroism: a practical guide, Proteins Struct. Funct. Genet. 7, 205214.
  • Kalpana, G. V. & Goff, S. P. (1993) Genetic analysis of homomeric interactions of human immunodeficiency virus type 1 integrase using the yeast two-hybrid system, Proc. Natl Acad. Sci. USA 90, 1059310597.
  • Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R. & Goff, S. P. (1994) Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5, Science 266, 20022006.
  • Katz, R. A. & Skalka, A. M. (1994) The retroviral enzymes, Annu. Rev. Biochem. 63, 8795.
  • Kemmink, J. & Creighton, T. E. (1995) Effects of trifluoroethanol on the conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor, Biochemistry 34, 1263012635.
  • Kroll, D. J., Sullivan, D. M., Gutierrez-Hartmann, A. & Hoeffler, J. P. (1993) Modification of DNA topoisomerase II activity via direct interactions with the cyclic adenosine-3′, 5′-monophosphate response element binding protein and related transcription factors, Mol. Endocrinol. 7, 305318.
  • Kukolsky, J., Jones, K. S., Katz, R. A., Mack, J. P. G. & Skalka, A. M. (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases, Mol. Cell. Biol. 12, 23312338.
  • La Femina, R. L., Schneider, C. L., Robbins, H. L., Callahan, P. L., LeGrow, K., Roth, E., Schleif, W. A. & Emini, E. A. (1992) Requirement of active immunodeficiency type 1 integrase for productive infection of human T-lymphoid cells, J. Virol. 66, 74147419.
  • Lapadat-Tapolsky, M., De Rocquigny, H., Van Gent, D., Roques, B., Plasterk, R. & Darlix, J. L. (1993) Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle, Nucleic Acids. Res. 21, 831839.
  • Lau, S. Y. M., Taneja, A. K., & Hodges, R. S. (1984) Synthesis of a model protein of a potential leucine zipper motif defined secondary and quaternary structure, J. Biol. Chem. 259, 1325313261.
  • Lee, J. S. & Morgan, A. R. (1978) A rapid method for the measurement of the unwinding angle of intercalating agents and the superhelix density of circular DNAs, Nucleic Acids Res. 5, 24252439.
  • Lin, T. H. & Grandgenett, D. P. (1991) Retrovirus integrase: identification of a potential leucine-zipper motif, Protein Eng. 4, 435441.
  • Lodi, P. J., Ernst, J. A., Kuszewski, J., Hickman, A. B., Engelman, A., Craigie, R., Clore, G. M. & Gronenborn, A. M. (1995) Solution structure of the DNA binding domain of HIV-1 integrase, Biochemistry 34, 98269833.
  • Lupas, A., Van Dyke, M. V. & Stock, J. (1991) Predicting coiled-coils from protein sequences, Science 252, 11621164.
  • McEuen, A. R., Edwards, B., Koepke, K. A., Ball, A. E., Jennings, B. A., Wolstenholme, A. J., Danson, M. J. & Hough, D. W. (1992) Zinc binding by retroviral integrase, Biochem. Biophys. Res. Commun. 189, 813818.
  • Merutka, G. & Stellwagen, E. (1989) Analysis of peptides for helical prediction, Biochemistry 28, 352357.
  • Mizuuchi, K. (1992) Polynucleotidyl transfer reactions in transpositional DNA recombination, J. Biol. Chem. 267, 2127321276.
  • Müller, H. P. & Varmus, H. E. (1994) DNA bending creates sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes, EMBO J. 13, 47044714.
  • Muñoz, V. & Serrano, L. (1994) Elucidating the folding problem of helical peptides using empirical parameters, Nat. Struct. Biol. 1, 399409.
  • Muñoz, V. & Serrano, L. (1995a) Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides, J. Mol. Biol. 245, 275297.
  • Muñoz, V. & Serrano, L. (1995b) Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence, J. Mol. Biol. 245, 297308.
  • O'Shea, E. K., Lumb, K. J. & Kim, P. S. (1993) Peptide ‘Velcro’: design of a heterodimeric coiled-coil, Curr. Biol. 3, 658667.
  • Pemberton, I. K., Buckle, M. & Buc, H. (1996) The metal ion induced co-operative binding of HIV-1 integrase to DNA exhibits a marked preference for Mn(II) rather than Mg(II), J. Biol. Chem. 271, 14981506.
  • Peters, K. & Richards, F. M. (1977) Chemical cross-linking: reagents and problems in studies of membrane structure, Annu. Rev. Biochem. 46, 253261.
  • Rice, P. & Mizuuchi, K. (1995) Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration, Cell 82, 209220.
  • Rozzelle, J. E. Jr, Wang, J. G., Wagner, D. S., Erickson, B. W & Lemon, S. M. (1995) Self-association of a synthetic peptide from the N terminus of the hepatitis delta virus protein into an immunoreactive α-helical multimer, Proc. Natl. Acad. Sci. USA 92, 382386.
  • Schägger, H. & von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem. 166, 368379.
  • Sherman, P. A. & Fyfe, J. A. (1990) Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity, Proc. Natl. Acad. Sci. USA 87, 51195123.
  • Van Gent, D. C., Vink, C., Oude Groeneger, A. A. M. & Plasterk, R. H. A. (1993) Complementation between HIV integrase proteins mutated in different domains, EMBO J. 12, 32613267.
  • Vink, C. & Plasterk, R. H. A. (1993) The human immunodeficiency virus integrase protein, Trends Genet. 9, 433437.
  • Wendt, H., Berger, C., Baici, A., Thomas, R. M. & Bosshard, H. R. (1995) Kinetics of folding of leucine zipper domains, Biochemistry 34, 40974107.
  • Woerner, A. M. & Marcus-Sekura, C. J. (1993) Characterization of a DNA binding domain in the C-terminus of HIV-1 integrase by deletion mutagenesis, Nucleic Acids. Res. 21, 35073511.
  • Zhong, L. & Johnson, W. C. (1992) Environment affects amino acid preference for secondary structure, Proc. Natl Acad. Sci. USA 89, 44624465.