SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    C.A. Suarez-Mendez, M. Hanemaaijer, Angela ten Pierick, J.C. Wolters, J.J. Heijnen, S.A. Wahl, Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis, Metabolic Engineering Communications, 2016, 3, 52

    CrossRef

  2. 2
    Antonella Marongiu, Giacomo Zara, Jean-Luc Legras, Alessandra Del Caro, Ilaria Mascia, Costantino Fadda, Marilena Budroni, Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale, Journal of Industrial Microbiology & Biotechnology, 2015, 42, 1, 85

    CrossRef

  3. 3
    D.M.W. Zilli, R.G. Lopes, S.L. Alves, L.M. Barros, L.C. Miletti, B.U. Stambuk, Secretion of the acid trehalase encoded by the CgATH1 gene allows trehalose fermentation by Candida glabrata, Microbiological Research, 2015, 179, 12

    CrossRef

  4. 4
    Pui Yeu Phoon, Federico Gómez Galindo, António Vicente, Petr Dejmek, Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves, Journal of Food Engineering, 2008, 88, 1, 144

    CrossRef

  5. 5
    Yingchun Liu, Zhongkang Wang, Youping Yin, Yueqing Cao, Hua Zhao, Yuxian Xia, Expression, purification, and characterization of recombinant Metarhizium anisopliae acid trehalase in Pichia pastoris, Protein Expression and Purification, 2007, 54, 1, 66

    CrossRef

  6. 6
    T. Kikawada, A. Saito, Y. Kanamori, Y. Nakahara, K.-i. Iwata, D. Tanaka, M. Watanabe, T. Okuda, Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells, Proceedings of the National Academy of Sciences, 2007, 104, 28, 11585

    CrossRef

  7. 7
    Ana Carla Medeiros Morato Aquino, Simone Carvalho Peixoto-Nogueira, João Atílio Jorge, Héctor Francisco Terenzi, Maria de Lourdes Teixeira de Moraes Polizeli, Characterisation of an acid trehalase produced by the thermotolerant fungus Rhizopus microsporus var. rhizopodiformis: Biochemical properties and immunochemical localisation, FEMS Microbiology Letters, 2005, 251, 1
  8. 8
    Rachel E. Day, Vincent J. Higgins, Peter J. Rogers, Ian W. Dawes, Characterization of the putative maltose transporters encoded by YDL247w and YJR160c, Yeast, 2002, 19, 12
  9. 9
    David Brodmann, Astrid Schuller, Jutta Ludwig-Müller, Roger A. Aeschbacher, Andres Wiemken, Thomas Boller, Astrid Wingler, Induction of Trehalase inArabidopsisPlants Infected With the Trehalose-Producing PathogenPlasmodiophora brassicae, Molecular Plant-Microbe Interactions, 2002, 15, 7, 693

    CrossRef

  10. 10
    Yuxian Xia, Meiying Gao, John M Clarkson, A.Keith Charnley, Molecular cloning, characterisation, and expression of a neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae, Journal of Invertebrate Pathology, 2002, 80, 2, 127

    CrossRef

  11. 11
    Y Xia, J.M Clarkson, A.K Charnley, Trehalose-hydrolysing enzymes of Metarhizium anisopliae and their role in pathogenesis of the tobacco hornworm, Manduca sexta, Journal of Invertebrate Pathology, 2002, 80, 3, 139

    CrossRef

  12. 12
    Claudia Hollatz, Boris U Stambuk, Colorimetric determination of active α-glucoside transport in Saccharomyces cerevisiae, Journal of Microbiological Methods, 2001, 46, 3, 253

    CrossRef

  13. 13
    Anke Reinders, John M. Ward, Functional characterization of the α-glucoside transporter Sut1p from Schizosaccharomyces pombe, the first fungal homologue of plant sucrose transporters, Molecular Microbiology, 2001, 39, 2
  14. 14
    Boris U. Stambuk, Pedro S. Araujo, Kinetics of active α-glucoside transport in Saccharomyces cerevisiae, FEMS Yeast Research, 2001, 1, 1
  15. 15
    Jean François, Jean Luc Parrou, Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiology Reviews, 2001, 25, 1
  16. 16
    Boris U. Stambuk, A simple laboratory exercise illustrating active transport in yeast cells, Biochemistry and Molecular Biology Education, 2000, 28, 6
  17. 17
    Boris U. Stambuk, Anderson S. Batista, Pedro S. De Araujo, Kinetics of active sucrose transport in Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, 2000, 89, 2, 212

    CrossRef

  18. 18
    Andreas Schlösser, MsiK-dependent trehalose uptake in Streptomyces reticuli, FEMS Microbiology Letters, 2000, 184, 2
  19. 19
    É F. Malluta, Patrícia Decker, Boris U. Stambuk, The Kluyver effect for trehalose in Saccharomyces cerevisiae, Journal of Basic Microbiology, 2000, 40, 3
  20. 20
    L Plourde-Owobi, S Durner, G Goma, J François, Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability, International Journal of Food Microbiology, 2000, 55, 1-3, 33

    CrossRef

  21. 21
    Boris U Stambuk, Marcia A Silva, Anita D Panek, Pedro S Araujo, Active α-glucoside transport in Saccharomyces cerevisiae, FEMS Microbiology Letters, 1999, 170, 1
  22. 22
    R. Cuber, E.C.A. Eleutherio, M.D. Pereira, A.D. Panek, The role of the trehalose transporter during germination, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1997, 1330, 2, 165

    CrossRef

  23. 23
    Solomon Nwaka, Helmut Holzer, 1997,

    CrossRef