• yeast;
  • trehalose transport;
  • kinetics;
  • membranes


  1. Top of page
  2. Abstract
  3. References

Cells of Saccharomyces cerevisiae are able to transport trehalose against a concentration gradient, without efflux or counterflow of the labeled substrate. Uptake was inhibited by uncouplers, acetic acid, and organic mercury compounds. The addition of trehalose resulted in alkalinization of the medium. The ratio of H+ depletion to trehalose uptake by yeast cells was approximately 1:1, which indicates the existence of a trehalose-H+ symporter in these cells. The optimum pH for this active H+-trehalose symport was 5.0, and both the Km and the Vmax were negatively affected by increasing or decreasing the extracellular pH from its optimum value. Kinetic studies showed the existence of at least two different trehalose transport activities in yeast cells: a high-affinity H+-trehalose symporter (Km= 4 mM), and a low-affinity transport activity (Km >100 mM) that could be a facilitated diffusion process. The high-affinity H+-trehalose symporter was repressed by glucose, whereas the low-affinity uptake was constitutively expressed in S. cerevisiae.


carbonylcyanide p -trifluoromethoxyphenyl-hydrazone


p -hydroxymercuriphenylsulfonic acid

uncoupler 1799



α,α-Trehalase (EC


α,α-trehalose-phosphate synthase (UDP-forming) (EC


  1. Top of page
  2. Abstract
  3. References
  • 1
    Elbein, A. D. (1974) The metabolism of α,α-trehalose, Adv. Carbohydr. Chem. Biochem. 30, 227256.
  • 2
    Thevelein, J. M. (1984) Regulation of trehalose mobilization in fungi, Micmbiol. Rev. 48, 4259.
  • 3
    Panek, A. D. (1991) Storage carbohydrates, in The yeasts (Rose, A. H. & Harrison, J. S., eds) vol. 4, pp. 655677, Academic Press, New York .
  • 4
    Panek, A. D. (1995) Trehalose metabolism – new horizons in technological applications, Brazilian J. Med. Biol. Res. 28, 169181.
  • 5
    Crowe, J. H., Crowe, L. M. & Jackson, S. A. (1983) Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum, Arch. Biochem. Biophys. 220, 477484.
  • 6
    Crowe, J. H., Crowe, L. M. & Chapman, D. (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose, Science 223, 701703.
  • 7
    Crowe, J. H., Crowe, L. M., Carpenter, J. F., Rudolph, A. S., Wistrom, C. A., Spargo, B. J. & Anchordoguy, T. J. (1988) Interactions of sugars with membranes, Biochim. Biophys. Ada 947, 367384.
  • 8
    Crowe, L. M. & Crowe, J. H. (1991) Solution effects on the thermotropic phase transition of unilamellar liposomes, Biochim. Biophys. Acta 1064, 267274.
  • 9
    Leslie, S. B., Teter, S. A., Crowe, L. M. & Crowe, J. H. (1994) Trehalose lowers membrane phase transitions in dry yeast cells, Biochim. Biophys. Acta 1192, 713.
  • 10
    Mansure, J. J. C., Panek, A. D., Crowe, L. M. & Crowe, J. H. (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes, Biochim. Biophys. Acta 1191, 309316.
  • 11
    Crowe, L. M., Crowe, J.H., Rudolph, A. S., Womersley, C. & Appel, L. (1985) Preservation of freeze-dried liposomes by trehalose, Arch. Biochem. Biophys. 242, 240247.
  • 12
    Crowe, J. H. & Crowe, L. M. (1988) Factors affecting the stability of dry liposomes, Biochim. Biophys. Acta 939, 327334.
  • 13
    Harrigan, P. R., Madden, T. D. & Cullis, P. R. (1990) Protection of liposomes during dehydration or freezing, Chem. Phys. Lipids 52, 139149.
  • 14
    Kotyk, A. & Michaljanicova, D. (1979) Uptake of trehalose by Saccharomyces cerevisiae, J. Gen. Microbiol. 110, 323332.
  • 15
    Crowe, J. H., Panek, A. D., Crowe, L. M., Panek, A. C. & de Araujo, P. S. (1991) Trehalose transport in yeast cells, Biochem. Int. 24, 721730.
  • 16
    de Araujo, P. S., Panek, A. C., Crowe, J. H., Crowe, L. M. & Panek, A. D. (1991) Trehalose-transporting membrane vesicles from yeasts, Biochem. Int. 24, 731737.
  • 17
    Eleutherio, E. C. A., de Araujo, P. S. & Panek, A. D. (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae, Biochim. Biophys. Acta 1156, 263266.
  • 18
    Stambuk, B. U., Crowe, J. H., Crowe, L. M. L., Panek, A. D. & de Araujo, P. S. (1993) A dependable method for the synthesis of [14C]trehalose, Anal. Biochem. 212, 150153.
  • 19
    Serrano, R. (1977) Energy requirements for maltose transport in yeast, Eur. J. Biochem. 80, 97102.
  • 20
    Santos, E., Rodriguez, L., Elorza, M. V. & Sentandreu, R. (1982) Uptake of sucrose by Saccharomyces cerevisiae, Arch. Biochem. Biophys. 216, 652660.
  • 21
    Serrano, R., Gancedo, J. M. & Gancedo, C. (1973) Assay of yeast enzymes in situ. A potential tool in regulation studies, Eur. J. Biochem. 34, 479482.
  • 22
    Umbreit, W. M., Burris, R. H. & Stauffer, J. F. (1972) Manometric and biochemical techniques; a manual describing methods applicable to the study of tissue metabolites, 5th edn, pp. 276294, Burgess, Minneapolis .
  • 23
    Coutinho, C. C., Silva, J. T. & Panek, A. D. (1992) Trehalase activity and its regulation during growth of Saccharomyces cerevisiae, Biochem. Int. 26, 521530.
  • 24
    Kotyk, A. & Georghiou, G. (1994) Both glucose-type monosaccharides and one of their metabolites are required for activation of yeast plasma membrane H+-ATPase. Cell Biol. Int. 18, 813817.
  • 25
    Kotyk, A. (1994) Dependence of the kinetics of secondary active transports in yeast on H+-ATPase acidification, J. Membr. Biol. 138, 2935.
  • 26
    Serrano, R. (1991) Transport across yeast vacuolar and plasma membranes, in The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics (Broach, J. R., Pringel, J. R. & Jones, E. W., eds) pp. 523585, Cold Spring Harbor Laboratory, Cold Spring Harbor NY .
  • 27
    Lagunas, R. (1993) Sugar transport in Saccharomyces cerevisiae, FEMS Microbiol Rev. 10, 229242.
  • 28
    Cirillo, V. (1968) Galactose transport in Saccharomyces cerevisiae. I. Non-metabolizable sugars as substrates and inducers of the galactose transport system, J. Bacteriol. 95, 17271731.
  • 29
    Franzusoff, A. J. & Cirillo, V. (1982) Uptake and phosphorylation of 2-deoxy-d-glucose by wild type and single-kinase strains of Saccharomyces cerevisiae, Biochim. Biophys. Ada 688, 295304.
  • 30
    Bisson, L. F. & Fraenkel, D. G. (1983) Transport of 6–deoxyglucose in Saccharomyces cerevisiae, J. Bacteriol. 155, 9951000.
  • 31
    Bisson, L. F., Coons, D. M., Kruckeberg, A. L. & Lewis, D. A. (1993) Yeast sugar transporters, Crit. Rev. Biochem. Mol. Biol. 28, 259308.
  • 32
    Walsh, M. C., Smits, H. P., Scholte, M. & van Dam, K. (1994) Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose, J. Bacteriol. 176, 953958.
  • 33
    Gonçalves, T. & Loureiro-Dias, M. C. (1994) Aspects of glucose uptake in Saccharomyces cerevisiae, J. Bacteriol. 176, 15111513.
  • 34
    Brocklehurst, R., Gardner, D. & Eddy, A. A. (1977) The absorption of protons with a-methyl glucoside and α-thioethyl glucoside by the yeast N.C.Y.C. 240. Evidence against the phosphorylation hypothesis, Biochem. J. 162, 591599.
  • 35
    Ramos, S. & Kaback, H. R. (1977) pH-dependent changes in proton: substrate stoichiometries during active transport in Escherichia coli membrane vesicles, Biochemistry 16, 42704275.
  • 36
    Van Leeuwen, C. C. M., Weusthuis, R. A., Postma, E., van Den Broek, P. J. A. & van Dijken, J. P. (1992) Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles, Biochem. J. 284, 441445.
  • 37
    Van Den Broek, P. J. A. & van Steveninck, J. (1982) Kinetic analysis of H+/methyl β-d-thiogalactoside symport in Saccharomyes fragilis, Biochim. Biophys. Acta 693, 213220.
  • 38
    Fuhrmann, G. F. & Volker, B. (1993) Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots, Biochim. Biophys. Acta 1145, 180182.
  • 39
    Benito, B. & Lagunas, R. (1992) The low-affinity component of Saccharomyces cerevisiae maltose transport is an artifact, J. Bacteriol. 174, 30653069.
  • 40
    Ko, C. H., Liang, H. & Gaber, R. F. (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae, Mol. Cell. Biol. 13, 638648.
  • 41
    Coons, D. M., Bolton, R. B. & Bisson, L. F. (1995) Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae, J. Bacteriol. 177, 32513258.