• hexose transport;
  • glucose uptake;
  • Saccharomyces cerevisiae;
  • signaling;
  • glucose repression


  1. Top of page
  2. Abstract
  3. References

In Saccharomyces cerevisiae, there are a large number of genes (HXT1-HXT17/SNF3/RGT2) encoding putative hexose transporters which, together with a galactose permease gene (GAL2), belong to a superfamily of monosaccharide facilitator genes. We have performed a systematic analysis of the HXT1–7 and GAL2 genes and their function in hexose transport. Glucose uptake was below the detection level in the hxt1–7 null strain growing on maltose. Determination of the kinetic parameters of individual hexose transporter-related proteins (Hxtp) expressed in the hxt null background revealed Hxt1p and Hxt3p as low-affinity transporters (Km(glucose)= 50–100mM), Hxt2p and Hxt4p as moderately low in affinity (Km(glucose) about 10 mM), and Hxt6p, Hxt7p as well as Gal2p as high-affinity transporters (Km(glucose)= 1–2 mM). However, Hxt2p kinetics in cells grown on low glucose concentrations showed a high-affinity (Km =1.5 mM) and a low-affinity component (Km= 60 mM). Furthermore, we investigated the involvement of glucose transport in glucose signalling. Glucose repression of MAL2, SUC2 and GAL1 was not dependent on a specific transporter but, instead, the strength of the repression signal was dependent on the level of expression, the properties of the individual transporters and the kind of sugar transported. The strength of the glucose repression signal correlated with the glucose consumption rates in the different strains, indicating that glucose transport limits the provision of a triggering signal rather then being directly involved in the triggering mechanism.


hexose transporter-related protein


glucose consumption rate


  1. Top of page
  2. Abstract
  3. References
  • Ammerer, G. (1983) Expression of genes in yeast using the ADC1 promoter, Methods Enzymol. 101, 192201.
  • Birnboim, H. C. & Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res. 7, 15131523.
  • Bisson, L. F. & Fraenkel, D. G. (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae, Proc. Natl Acad. Sci. USA 80, 17301734.
  • Bisson, L. F. & Fraenkel, D. G. (1984) Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae, J. Bacteriol. 159, 10131017.
  • Bisson, L. F., Neigeborn, L., Carlson, M. & Fraenkel, D. G. (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae, J. Bacteriol. 169, 16561662.
  • Bisson, L. F. (1988) High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control, J. Bacteriol. 170, 48384845.
  • Bisson, L. F., Coons, D. M., Kruckeberg, A. L. & Lewis, D. A. (1993) Yeast sugar transporters, Crit. Rev. Biochem. Mol. Biol. 28, 259308.
  • Boles, E., Müller, S. & Zimmermann, F. K. (1996) A multi-layered sensory system controls yeast glycolytic gene expression, Mol. Micro-biol. 19, 641642.
  • Boles, E., Zimmermann, F. K. & Theveleinq, J. M. (1997) Metabolic signals, in Yeast sugar metabolism (Zimmermann, F. K. & Entian, K.-D., eds) Technomic Publishing Co, Lancaster PA , in the press.
  • Celenza, J. L., Marshall Carlson, L. & Carlson, M. (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein, Proc. Natl Acad. Sci. USA 85, 21302134.
  • Ciriacy, M. & Reifenberger, E. (1997) Hexose transport, in Yeast sugar metabolism (Zimmermann, F. K. & Entian, K.-D., eds) Technomic Publishing Co, Lancaster PA , in the press.
  • Dohmen, R. J., Strasser, A. W. M., Höner, C. B. & Hollenberg, C. P. (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera, Yeast 7, 691692.
  • Fuhrmann, G. F. & Völker, B. (1992) Regulation of glucose transport in Saccharomyces cerevisiae, J. Biotechnol. 27, 115.
  • Fuhrmann, G. F. & Völker, B. (1993) Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots, Biochim. Biophys. Acta 1145, 180182.
  • Gamo, F.-J., Lafuente, M. J. & Gancedo, C. (1994) The mutation DGT1–1 decreases glucose transport and alleviates carbon catabolite repression Saccharomyces cerevisiae, J. Bacteriol. 176, 74237429.
  • Gancedo, J. M. (1992) Carbon catabolite repression in yeast, Eur. J. Biochem. 206, 297313.
  • Goldstein, A. & Lampen, J. O. (1975) β-D-Fructofuranoside fructohydrolase from yeast, Methods Enzymol. 420, 504511.
  • Hanahanq, D. (1985) Techniques for transformation of Escherichia coli, in DNA-cloning I (Glover, D. M., ed.) pp. 109135, IRL Press, Oxford .
  • Johnston, M. & Carlson, M. (1992) Regulation of carbon and phosphate utilization, in The molecular and cellular biology of the yeast Saccharomyces (Broach, J., Jones, E. W. & Pringle, J., eds) vol. 2, pp. 193281, Cold Spring Harbor Press, Cold Spring Harbor NY .
  • Ko, C. H., Liang, H. & Gaber, R. F. (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae, Mol. Cell. Biol. 13, 638648.
  • Kötter, P., Amore, R., Hollenberg, C. P. & Ciriacy, M. (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant, Curr. Genet. 18, 493500.
  • Kruckeberg, A. L. & Bisson, L. F. (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport, Mol. Cell. Biol. 10, 59035913.
  • Kruckeberg, A. L. (1996) The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol. 166, 283292.
  • Lewis, D. A. & Bisson, L. F. (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters, Mol. Cell. Biol. 11, 38043813.
  • Ma, H., Bloom, L. M., Zhu, Z., Walsh, C. T. & Botstein, D. (1989) The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae, Mol Cell. Biol. 9, 56435649.
  • Miller, J. H. (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor NY .
  • Müller, F. (1988) Retrovirus-ähnliche Ty-Partikel und Reverse Trans-kription in der Hefe Saccharomyces cerevisiae, PhD thesis, University of Düsseldorf.
  • Özcan, S., Freidel, K., Leuker, A. & Ciriacy, M. (1993) Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae, J. Bacteriol. 175, 55205528.
  • Özcan, S., Schulte, F., Freidel, K., Weber, A. & Ciriacy, M. (1994) Glucose uptake and metabolism in grr1/cat80 mutants of Saccharomyces cerevisiae, Eur. J. Biochem. 224, 605611.
  • Özcan, S. & Johnston, M. (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose, Mol. Cell. Biol. 15, 15641572.
  • Özcan, S. & Johnston, M. (1996) Two different repressors collaborate to restrict expression of yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose, Mol. Cell. Biol. 16, 55365545.
  • Özcan, S., Dover, J., Rosenwald, A. G., Woelfl, S. & Johnston, M. (1996) Two glucose transporters in S. cerevisiae are glucose sensors that generate a signal for induction of gene expression, Proc. Natl Acad. Sci. USA 93, 1242812432.
  • Ramos, J., Szkutnicka, K. & Cirillo, V. P. (1989) Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles, J. Bacteriol. 171, 35393544.
  • Reifenberger, E., Freidel, K. & Ciriacy, M. (1995) Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux, Mol. Microbiol. 16, 157167.
  • Riballo, E. & Lagunas, R. (1994) Involvement of endocytosis in catabolite inactivation of the K+ and glucose transport systems in Saccharomyces cerevisiae, FEMS Microbiol. Lett. 121, 7780.
  • Ronne, H. (1995) Glucose repression in fungi, Trends Genet. 11, 1217.
  • Rose, M., Albig, W. & Entian, K. D. (1991) Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII, Eur. J. Biochem. 199, 511518.
  • Santos, E., Rodiguez, L., Elorza, M. V. & Setandreu, R. (1982) Uptake of sucrose by Saccharomyces cerevisiae, Arch. Biochem. Biophys. 216, 652660.
  • Sierkstraq, L. N., Silljé, H. H. W., Varbakel, J. M. A. & Verrips, C. T. (1993) The glucose-6-phosphate isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae, Eur. J. Biochem. 214, 121127.
  • Smits, H. P. (1996) Mechanism and regulation of glucose transport in Saccharomyces cerevisiae, PhD thesis, University of Amsterdam.
  • Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules, Proc. Natl Acad. Sci. USA 76, 10351039.
  • Theodoris, G., Fong, N. M., Coons, D. M. & Bisson, L. F. (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae, Genetics 137, 957966.
  • Thevelein, J. M. (1994) Signal transduction in yeast, Yeast 10, 17531790.
  • Thevelein, J. M. & Hohmann, S. (1995) Trehalose synthase, guard to the gate of glycolysis in yeast? Trends Biochem. Sci. 20, 310.
  • Tschopp, J. F., Emr, S. D., Field, C. & Schekman, R. (1986) GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae, J. Bacteriol. 166, 313318.
  • Vallier, L. G., Coons, D., Bisson, L. F. & Carlson, M. (1994) Altered regulatory responses of glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae, Genetics 136, 12791285.
  • Walsh, M. C., Smits, H.-P., Scholte, M. & van Dam, K. (1994a) Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose, J. Bacteriol. 176, 953958.
  • Walsh, M. C., Smits, H.-P. & van Dam, K. (1994b) Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae cells, but not the activity of glucose transport, Yeast 10, 15531558.
  • Walsh, M. C., Scholte, M., Valkier, J., Smits, H.-P. & van Dam, K. (1996) Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family, J. Bacteriol. 178, 25932597.
  • Wendell, D. L. & Bisson, L. F. (1994) Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated post-translationally, J. Bacteriol. 176, 37303737.
  • Yin, Z., Smith, R. J. & Brown, A. J. P. (1996) Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose, Mol. Microbiol 20, 751764.
  • Yocum, R. R., Hanley, S., West, R. Jr & Ptashne, M. (1984) Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae, Mol. Cell. Biol. 4, 19851998.
  • Zamenhoff, S. (1957) Preparation and assay of deoxyribonucleic acids from animal tissue, Methods Enzymol. 3, 696704.
  • Zenke, F., Engels, R., Vollenbroich, V., Meyer, J., Hollenberg, C. P. & Breunig, K. (1996) Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p, Science 272, 16621665.
  • Zimmermann, F. K. & Eaton, N. (1974) Genetics of induction and catabolite repression of maltase synthesis in Saccharomyces cerevisiae, Mol. Gen. Genet. 134, 261272.