• 1
    Ito, A., Mukaiyama, A., Itoh, Y., Nagase, H., Thorgesen, I. B., Eng hild, J. J., Sasguri, Y. & Mori, Y. (1996) Degradation of IL1β by MMP, J. Biol. Chem. 271, 1465714660.
  • 2
    Gearing, A. J. H., Beckett, P., Christodoulou, M., Churchill, M., Clements, J., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Patel, S., Thomas, W., Wells, G., Wood, L. M. & Wooley, K. (1994) Processing of TNFα precursor by metalloproteinases, Nature 370, 555556.
  • 3
    Murphy, G. & Reynolds, J. J. (1993) Extracellular matrix degradation, in Connective tissue and its heritable disorders. Molecular, genetic, and medical aspects (Royce., P. M. & Steinmann, B., eds) pp. 287316, Wiley-Liss, New York .
  • 4
    Sato, H., Takino, T., Okada. Y., Cao, J., Shinagawas, A., Yamamoto, E. & Seiki, M. (1994) A matrix metalloproteinase expressed on the surface of invasive tumor cells, Nature 370, 6165.
  • 5
    Takino, T., Sato, H., Shinagawa, A. & Seiki, M. (1995) Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library, J. Biol. Chem. 270, 2301323020.
  • 6
    Will, H. & Hinzmann, B. (1995) cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment, Eur. J. Biochem. 231, 602608.
    Direct Link:
  • 7
    Puente, X. S., Pendas, A. M., Llano, E., Velasco, G. & Lopez-Otin, C. (1996) Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma, Cancer Res. 56, 944949.
  • 8
    Butler, G. S., Will, H., Atkinson, S. J. & Murphy, G. (1997) Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur: J. Biochem. 244, 653657.
  • 9
    Pei, D. & Weiss, S. J. (1996) Transmembrane-deletion mutants of the membrane type matrix metalloproteinase-I process progelatinase A and express intrinsic matrix-degradading activity. J. Biol. Chem. 271, 91359140.
  • 10
    Will, H., Atkinson, S., Butler, G. S., Smith, B. & Murphy, G. (1996) The soluble catalytic domain of membrane-type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiales autoproteolytic activation. Regulation by TIMP-2 and 3, J. Aiol. Chem. 271, 1711917123.
  • 11
    Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M. & Okada, Y. (1997) MTI-MMP digests interstitial collagens and other extra cellular matrix macromolecules, J. Biol. Chem. 272, 24462451.
  • 12
    Knight, C. G., Willenbrock, F. & Murphy, G. (1992) A novel Coumarin-labelled peptide for sensitive continuous asays of the matrix metalloproteinascs. FEBS Lert. 296, 263266.
  • 13
    Smilenov. L., Forsberg, E., Zeligman, I., Sparrman, M. & Johansson, S. (1992) Separation of fibronectin from a plasma gelatinase using immobilized metal affinity chromatography, FEBS Lett. 302, 227230.
  • 14
    Siri, A., Knäuper, V., Veinara, N., Caocci, F., Murphy, G. & Zardi, L. (1995) Different susceptibility of small and large human tenascin-C isoforms to degradation by matrix metalloproteinases, J. Biol. Chem. 270, 86508654.
  • 15
    Fox, J. W., Mayer, U., Nischt, R., Aumailley, M., Reinhart, D., Wiedeman, H., Mann, K., Timpl, R., Krieg, T., Engel, J. & Chu, M.-L. (1991) Recombinant nidogen consists of three globular domains and mediate binding of laminin to collagen, EMBO J. 10, 31373146.
  • 16
    Costell, M., Sasaki, T., Mann, K., Yamada, Y. & Timpl, R. (1996) Structural characterization of recombinant domain II of the basement membrane proteoglycan perlecan, FEBS Lett. 396, 127131.
  • 17
    Schulze, B., Sasaki, T., Costell, M., Mann, K. & Timpl, R. (1996) Structural and cell-adhesive properties of three recombinant fragments derived from perlecan domain III, Matrix Biol. 15, 349357.
  • 18
    Cawston, T. E. & Barrett, A. J. (1979) A rapid reproducible assay for collagenase using (14C) acetylated collagen, Anal. Biochem. 99, 340345.
  • 19
    Murphy, G., Willenbrock, F., Ward, R. V., Cockett, M. I., Eaton, D. & Docherty, A. J. P. (1992) The C-terminal domain of 72 kD gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases, Biochem. J. 283, 637641.
  • 20
    Murphy, G., Cockett, M. I., Ward, R. V. & Docherty, A. J. P. (1991) Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan, Biochem. J. 277, 277279.
  • 21
    Knäuper, V., Lòpez-Otin, C., Smith, B., Knight, G. & Murphy, G. (1996) Biochemical characterization of human collagenase-3, J. Biol. Chem. 271, 15441550.
  • 22
    Murphy, G. & Willenbrock, F. (1995) Tissue inhibitors of matrix metalloendopeptidases, Methods Enzymol. 248, 496510.
  • 23
    Murphy, G., Houbrechts, A., Cockett, M. I., Williamson, R. A., O'Shea, M. & Docherty, A. J. P. (1991) The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity, Biochemistry 30, 80978102.
  • 24
    Apte, S. S., Olsen, B. R. & Murphy, G. (1995) The gene structure of TIMP-3 and its activities defines the distinct TIMP gene family, J, Biol. Chem. 270, 1431314318.
  • 25
    Okada, Y., Morodomi, T., Enghild, J. J., Suzuki, K., Yasui, A., Makamishi, I., Salvesen, G. & Nagase, H. (1990) Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymatic properties, Eur. J. Biochem. 194, 721730.
  • 26
    von Bredow, D. C., Nagle, R. B., Bowden, G. T. & Cress, A. E. (1995) Degradation of fibronectin fibrils by matrilysin and characterization of the degradation products, Exp. Cell Res. 221, 8391.
  • 27
    Woessner, F. & Nagase, H. (1980) An improved assay for proteases and polysaccharidases employing a cartilage proteoglycan substrate entrapped in polyacrylamide particles, Anal. Biochem. 107, 385392.
  • 28
    Fukai, F., Ohtaki, M., Fujii, N., Yajima, H., Ishii, T., Nishizawa, Y., Miyazaki, K. & Katayama, T. (1995) Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases, Biochemistry 34, 1145311459.
  • 29
    Ruoslahti, E. (1989) Proteoglycans in cell regulation, J. Biol. Chem. 264, 1336913372.
  • 30
    Werb, Z., Tremble, P. M., Behrendtsen, P., Crowly, E. & Damsky. C. H. (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin expression, J. Cell Biol. 109, 877889.
  • 31
    Homandberg, G. A., Meyers, R. & Xie, D. L. (1992) Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture, J. Biol. Chem. 267, 35973604.
  • 32
    Clark, R. A. F. (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin, J. Invest. Dermatol. 94, 128s134s.
  • 33
    Lohr, K. M., Kurth, C. A., Xie, D. L., Seyer, J. M. & Honiandberg, G. A. (1990) The aminoterminal 29-and 72-kD fragments of fibronectin mediate selective monocyte recruitment, Blood 76, 21172124.
  • 34
    Deryugina, E. I. & Bourdon, M. A. (1996) Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin, J. Cell Sci. 109, 643652.
  • 35
    Schwarzbauer, J. E. (1991) Fibronectin: from gene to protein, Curr Opin. Cell Biol. 3, 786791.
  • 36
    Yamamoto, M., Mohaman, S., Sawaya, R., Fuller, G. N., Seiki, M., Sato, H., Kokaslan, Z. L., Liotta, L. A., Nicolson, G. L. & Rao, J. S. (1996) Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumours in vivo and in vitro, Cancer Rex 56, 384392.
  • 37
    Timpl, R. & Brown, J. C. (1996) Supramolecular assembly of basement membranes, Bioessays 18, 123132.
  • 38
    Costell, M., Mann, K., Yamada, Y. & Timpl, R. (1997) Characterization of recombinant perlecan domain I and its substitution by glycosaminoglycans and oligosaccharides, Eur J. Biochem. 243, 115121.
  • 39
    Whitelock, J. M., Murdoch, A. D., Iozzo, R. V. & Underwood, P. A. (1996) The degradation of human endothelial cell-derived perlecan and release of bound bFGF by stromelysin, collagenase, plasmin and heparanases, J. Biol. Chem. 271, 1007910086.
  • 40
    Bode, W., Gomis-Ruth, F. X. & Stocker, W. (1993) Astacins, serralysins, sanke venoms and matrix metalloproteinzses exhibit identical zinc-binding environment (HEXXHXXGXXH and Metturn) and topologies and should be grouped into a common family, the ‘metzincins’, FEBS Left. 331, 134140.
  • 41
    Noel, A., Santavicca, M., Stoll, I., L'Hoir, C., Staub, A., Murphy, G., Rio, M.-C. & Basset, P. (1995) Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities, J. Biol. Chem. 270, 2286622872.
  • 42
    Knäuper, V., Smith, B., Stanton, H., Hembry, R. & Murphy, G. (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation, J. Biol. Chem. 271, 1712417131.