• Bacillus thuringiensis;
  • toxin;
  • pore;
  • membrane;
  • permeability


  1. Top of page
  2. Abstract
  3. References

An osmotic swelling assay utilising carboxyfluorescein self-quenching to measure intravesicular volume changes was adapted to investigate permeability changes induced by the Bacillus thuringiensis Cry1Ac -endotoxin in Manduca sexta midgut-brush-border-membrane vesicles (BBMV). This assay provides a more quantitative analysis of Cry-toxin-induced BBMV permeability changes, extending our previously published protocol which employed a light-scattering signal to monitor -endotoxin activity [Carroll, J. & Ellar, D. J. (1993)Eur. J. Biochem. 214, 771–7781, The fluorescence signal changes, supported by electron microscopy of the BBMV, demonstrated that CrylAc altered the membrane permeability for large non-electrolyte solutes. With this approach CrylAc was observed to induce or form pores freely permeant for raffinose (1.14 nm diameter) and using non-electrolytes of increasing size the pores were estimated to have a limiting diameter of approximately 2.4–2.6 nm under alkaline pH conditions.


brush-border-membrane vesicles


2-(cyclohexylamino)-ethanesulphonic acid


poly(ethylene glycol)


  1. Top of page
  2. Abstract
  3. References
  • Bell, R. A. & Joachim, F. G. (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms, Ann. Entomol. Soc. Am. 69, 365373.
  • Carroll, J. & Ellar, D. J. (1993) An analysis of Bacillus thuringiensisδ-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay, Eur: J. Biochern. 214, 771778.
  • Chen, P. Y., Pearce, D. & Verkman, A. S. (1988) Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore, Biochemistry 27, 57135718.
  • Chen, X. J., Curtiss, A., Alcantara, E. & Dean, D. H. (1995) Mutations in domain I of Bacillus thuringiensisδ-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles, J. Biol. Chem. 270, 64126419.
  • Crawford, D. N. & Harvey, W. R. (1988) Barium and calcium block Bacillus thuringiensis subspecies kurstaki δ-endotoxin inhibition of potassium current across isolated midgut of larval Manduca sexta, J. Exp. Biol. 137, 277286.
  • Ehrenberg, B. (1986) Spectroscopic methods for the determination of membrane surface charge density, Methods Enzymol. 127, 678696.
  • Giordana, B., Tasca, M., Villa, M., Chiantore, C., Hanozet, G. M. & Parenti, P. (1993) Bacillus thuringiensis subsp. aizawaiδ-endotoxin inhibits the K+/amino acid cotransporters of lepidopteran larval midgut, Comp. Biochem. Physiol. 106C, 403407.
  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R. & Cygler, M. (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation, J. Mol. Biol. 254, 447464.
  • Harris, H. W., Handler, J. S. Jr & Blumenthal, R. (1990) Apical membrane vesicles of ADH-stimulated toad bladder are highly water permeable, Am. J. Physiol. 258, F237F243.
  • Hendrickx, K., De Loof, A. & Van Mellaert, H. (1990) Effects of Bacillus thuringiensis delta-endotoxin on the permeability of brush border membrane vesicles from tobacco hornworm (Manduca sexta) mid-gut, Comp. Biochem. Physiol. 95C, 241245.
  • Hofmann, C., Vanderbruggen, H., Höfte, H., Van Rie, J., Jansens, S. & Van Mellaert, H. (1988) Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts, Proc. Natl Acad. Sci. USA 85, 78447848.
  • Höfte, W. & Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev. 53, 242255.
  • Ihara, H., Kuroda, E., Wadano, A. & Himeno, M. (1993) Specific toxicity of δ-endotoxins from Bacillus thuringiensis to Bombyx mori, Biosci. Biotech. Biochem. 57, 200204.
  • Knowles, B. H. & Ellar, D. J. (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensisδ-endotoxins with different insect specificity, Biochim. Biophys. Acta 924, 509518.
  • Knowles, B. H. & Dow, J. A. T. (1993) The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut, BioEssays 15, 469476.
  • Krasilnikov, O. V. & Sabirov, R. Z. (1992) Comparative analysis of latrotoxin channels of different conductance in planar lipid bilayers. Evidence for cluster organization, Biochim. Biophys. Acta 1112, 124128.
  • Laemmli, U. K. & Favre, M. (1973) Maturation of the head of bacterio-phage T4. I. DNA packaging events, J. Mol. Biol. 80, 575599.
  • Liang, Y., Patel, S. S. & Dean, D. H. (1995) Irreversible binding kinetics of Bacillus thuringiensis CryIA δ-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity, J. Biol. Chem. 270, 2471924724.
  • Lorence, A., Darszon, A., Díaz, C., Likvano, A., Quintero, R. & Bravo, A. (1995) Δ-Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar bilayers, FEBS Lett. 360, 217222.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193, 265275.
  • Martin, F. G. & Wolfersberger, M. G. (1995) Bacillus thuringiensisδ-endotoxin and larval Manduca sexta midgut brush-border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers, J. Exp. Biol. 198, 9196.
  • Rajamohan, F., Alcantara, E., Lee, M. K., Chen, X. J., Curtiss, A. & Dean, D. H. (1995) Single amino acid changes in domain II of Bacillus thuringiensis CryIAb δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles, J. Bacteriol. 177, 22762282.
  • Reuveni, M. & Dunn, P. E. (1991) Differential inhibition by Bacillus thuringiensisδ-endotoxin of leucine and aspartic acid uptake into BBMV from midgut of Manduca sexta, Biochem. Biophys. Res. Commun. 181, 10891093.
  • Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol. 17, 208212.
  • Sacchi, V. F., Parenti, P., Hanozet, G. M., Giordana, B., Lüthy, P. & Wolfersberger, M. G. (1986) Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells, FEBS Lett. 204, 213218.
  • Scherrer, R. & Gerhardt, P. (1971) Molecular sieving by the Bacillus megaterium cell wall and protoplast, J. Bacteriol. 107, 718735.
  • Schwartz, J. L., Garneau, L., Savaria, D., Masson, L., Brousseau, R. & Rousseau, E. (1993) Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers, J. Membr: Biol. 132, 5362.
  • Slatin, S. L., Abrams, C. K. & English, L. (1990) Delta-endotoxins form cation-selective channels in planar lipid bilayers, Biochem. Biophys. Res. Commun. 169, 765772.
  • Stewart, G. S. A. B., Johnstone, K., Hagelberg, E. & Ellar, D. J. (1981) Commitment of bacterial spores to germinate, Biochem. J. 198, 101106.
  • Thomas, W. E. & Ellar, D. J. (1983) Bacillus thuringiensis var is-raelensis crystal δ-endotoxin: effects on insect and mammalian cells in vitro and in vivo, J. Cell Sci. 60, 181197.
  • Van Rie, J., Jansens, S., Höfte, H., Degheele, D. & Van Mellaert, H. (1989) Specificity of Bacillus thuringiensisδ-endotoxins, Eur. J. Biochem. 186, 239247.
  • Weiner, R. N., Schneider, E., Haest, C. W. M., Deuticke, B., Benz, R. & Frimmer, M. (1985) Properties of the leak permeability induced by a cytotoxic protein from Pseudomonas aeruginosa (PACT) in rat erythrocytes and black lipid membranes, Biochim. Biophys. Acta 820, 173182.
  • Wilschut, J. & Hoekstra, D. (1986) Membrane fusion: lipid vesicles as a model system, Chem. Phys. Lipids 40, 145166.
  • Wolfersberger, M. G. (1989) Neither barium nor calcium prevents the inhibition by Bacillus thuringiensisδ-endotoxin of sodium- or potassium gradient-dependent amino acid accumulation by tobacco horn-worm midgut brush border membrane vesicles, Arch. Insect Biochem. Physiol. 12, 267277.
  • Wolfersberger, M. G. (1991) Inhibition of potassium-gradient-driven phenylalanine uptake in larval Lymantria dispar midgut by two Bacillus thuringiensis delta-endotoxins correlates with the activity of the toxins as gypsy moth larvicides, J. Exp. Biol. 161, 519525.
  • Wolfersberger, M. G. (1995) Permeability of Bacillus thuringiensis CryI toxin channels, in Molecular action of insecticides on ion channels (Clark, J. M., ed.) pp. 294301, American Chemical Society Symposium Series 591, Washington DC .
  • Wolfersberger, M. G., Chen, X. J. & Dean, D. H. (1996) Site-directed mutations in the third domain of Bacillus thuringiensisδ-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles, Appl. Environ. Microbiol. 62, 279282.
  • Yoshihara, E., Gotoh, N. & Nakae, T. (1988) In vitro demonstration by the rate assay of the presence of small pore in the outer membrane of Pseudomonas aeruginosa, Biochem. Biophys. Res. Commun. 156, 470476.