• 1
    Futai, M. & Kanazawa, H. (1983) Structure and function of protontranslocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches, Microbiol. Rev. 47, 285312.
  • 2
    Strotmann, H. & Bickel-Sandkötter, S. (1984) Structure, function, and regulation of chloroplast ATPase, Annu. Rev. Plant Physiol. 35, 97120.
  • 3
    Senior, A. E. (1990) The proton-translocating ATPase of Escherichia coli, Annu. Rev. Biophys. Chem. 19, 741.
  • 4
    Laubinger, W. & Dimroth, P. (1987) Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1, F0, type, Eur. J. Biochem. 168, 475480.
  • 5
    Abrahams, J. P., Lesbie, A. G. W., Lutter, R. & Walker, J. E. (1994) Structure at 2.8 Å resolution of F,–ATPase from bovine heart mitochondria, Nature 370, 621628.
  • 6
    Gogol, E. P., Aggler, R., Sagermann, M. & Capaldi, R. A. (1989) Molecular architecture of Escherichia coli F, adenosinetriphos-phatase, Biochemistry 28, 47174724.
  • 7
    Ketcham, S. R., Davenport, J. W., Warncke, K. & McCarty, R. E. (1984) Role of the γ subunit of chloroplast coupling factor 1 in the light-dependent activation of photophosphorylation and ATPase activity by dithiothreitol, J. Biol. Chem. 259, 72867293.
  • 8
    Nalin, C. M. & McCarty, R. E. (1984) Role of disulphide bond in the γ-subunit in activation of the ATPase of chloroplast coupling factor 1, J. Biol. Chem. 259, 72757280.
  • 9
    Miki, J., Maeda, M., Mukohata, Y. & Futai, M. (1988) The γ-subunit of ATP synthase from spinach chloroplasts. Primary structure deduced from the cloned cDNA sequence, FEBS Lett. 232, 221226.
  • 10
    Werner-Griine, S., Gunkel, D., Schumann, J. & Strotmann, H. (1994) Insertion of a chloroplast-like regulatory segment responsible for thiol modulation into γ-subunit of F0F1-ATPase of the cyanobacterium Synechocystis 6803 by mutagenesis of atpC, Mol. & Gen. Genet. 244, 144150.
  • 11
    Krenn, B. E., Ardewijn, P., Van Walraven, H. S., Werner-Grüne, S., Strotmann, H. & Kraayenhof, R. (1995) ATP synthase from a cyanobacterial Synechocystis 6803 mutant containing the regulatory segment of the chloroplast γ subunit shows thiol modulation, Biochem. Soc. Trans. 23, 757760.
  • 12
    Ross, S. A., Zhang, M. X. & Selman, B. R. (1995) Role of the Chlamydomonas reinhardtii coupling factor 1 γ-subunit cysteine bridge in the regulation of ATP synthase, J. Biol. Chem. 270, 98139818.
  • 13
    Kramer, D. M. & Crofts, A. R. (1989) Activation of the chloroplast ATPase measured by the electrochromic change in leaves of intact plants, Biochim. Biophys. Acta 976, 2841.
  • 14
    Vambutas, V. K. & Racker, E. (1965) Partial resolution of the enzymes catalyzing photophosphorylation. I. Stimulation of photophosphorylation by a preparation of a latent, Ca++-dependent adenosine triphosphatase from chloroplasts. J. Biol. Chem. 240, 26602667.
  • 15
    Farron, F. & Racker, E. (1970) Studies on the mechanism of the conversion of coupling factor 1 from chloroplasts to an active adenosine triphosphatase, Biochemistry 9, 38293836.
  • 16
    Sakurai, H., Shinohara, K., Hisabori, T. & Shinohara, K. (1981) Enhancement of adenosine triphosphatase activity of purified chloroplast coupling factor 1 in an aqueous organic solvent, J. Biochem. (Tokyo) 90, 95102.
  • 17
    Pick, U. & Bassilian, S. (1982) Activation of magnesium ion specific adenosinetriphosphatase in chloroplast coupling factor 1 by octyl glucoside, Biochemistry 21, 61446152.
  • 18
    McCarty, R. E. & Racker, E. (1968) Partial resolution of the enzymes catalyzing photophosphorylation. III. Activation of adenosine triphosphatase and 32P-labeled orthophosphate-adenosine triphosphate exchange in chloroplasts, J. Biol. Chem. 243, 129137.
  • 19
    Kaibara, C., Matsui, T., Hisabori, T. & Yoshida, M. (1996) Structural asymmetry of F,–ATPase caused by the γ subunit generates a high affinity nucleotide binding site, J. Biol. Chem. 271, 24342438.
  • 20
    Kothen, G., Schwarz, O. & Strotmann, H. (1992) Enzyme kinetic studies on chloroplast H+-ATPase by a pH clamp technique, in Research in photosynthesis (Murata, N., ed.) vol. 2, pp. 661668, Kluwer Academic Publishers, The Netherlands .
  • 21
    Richter, M. L., Snyder, B., McCarty, R. E. & Hammes, G. G. (1985) Binding stoichiometry and structural mapping of the c polypeptide of chloroplast coupling factor 1, Biochemistry 24, 57555763.
  • 22
    Cruz, J. A., Harfe, B., Radkowske, C. A., Dann, M. S. & McCarty, R. E. (1995) Molecular dessection of the ε subunit of the chloroplast ATP synthase of spinach, Plant Physiol. (Bethesda) 109, 13791388.
  • 23
    Wilkens, S., Dahlquist, F. W., McIntosh, L. P., Donaldson, L. W. & Capaldi, R. A. (1995) Structural features of the ε subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy, Nature Struct. Biol. 2, 961967.
  • 24
    Futai, M., Kanazawa, H., Takeda, K. & Kagawa, Y. (1980) Reconstitution of ATPase from the isolated subunits of coupling factor F1,'s of Escizerichia coli and thermophilic bacterium PS3, Biochem. Biophys. Res. Commun. 96, 227234.
  • 25
    Richter, M. L., Gromet-Elhanan, Z. & McCarty, R. E. (1986) Reconstitution of the H+-ATPase complex of Rhodospirillum rubrum by the β subunit of the chloroplast coupling factor 1, J. Biol. Chem. 261, 1210912113.
  • 26
    Kaim, G. & Dimroth, P. (1994) Construction, expression and cbaracterization of a plasmid-encoded Na+-specific ATPase hybrid consisting of Propionigenium modestum F0,–ATPase and Escherichia coli F,–ATPase, Eui: J. Biochem. 222, 615623.
  • 27
    Munn, A. L., Whitfeld, P. R., Bottomley, W., Hudson, G. S., Jans, D. A., Gibson, F. & Cox, G. B. (1991) The chloroplast β-subunit allows assembly of the Esclzerichia coli Fo portion of the energy transducing adenosine triphosphatase, Biochim. Biophys. Acta 1060, 8288.
  • 28
    Chen, Z., Spies, A., Hein, R., Zhou, X., Thomas, B. C., Richter, M. L. & Gegenheimer, P (1995) A subunit interaction in chloroplast ATP synthase determined by genetic complementation between chloroplast and bacterial ATP synthase genes, J. Biol. Chem. 270, 1712417132.
  • 29
    Steinemann, D., Lill, H., Junge, W. & Engelbrecht, S. (1994) Over-production, renaturation and reconstitution of δ and ε subunits from chloroplast and cyanobacterial F1, Biochim. Biophys. Acta 1187, 354359.
  • 30
    Gao, F., Lipscomb, B., Wu, I. & Richter, M. L. (1995) In vitro assembly of the core catalytic complex of the chloroplast ATP synthase, J. Biol. Chem. 270, 97639769.
  • 31
    Amano, T., Tozawa, K., Yoshida, M. & Murakami, H. (1994) Spatial precision of a catalytic carboxylate of F1,–ATPase β subunit probed by introducing different carboxylate-containing side chains, FEBS Lett. 348, 9398.
  • 32
    Zurawski, C., Bottomley, W. & Whitfeld, P. R. (1982) Structures of the genes for the β and ε subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal, Proc. Natl Acad. Sci. USA 79, 62606264.
  • 33
    Ohta, S., Yohda, M., Ishizuka, M., Hirata, H., Hamamoto, T., Otawara-Hamamoto, Y., Matsuda, K. & Kagawa, Y. (1988) Sequence and over-expression of subunits adenosine triphosphate synthase in thermophilic bacterium PS3, Biochim. Biophys. Acta 933, 141155.
  • 34
    Ohtsubo, M., Yoshida, M., Ohta, S., Kagawa, Y., Yohda, M. & Date, T. (1987) In vitro mutated β subunits from the F1,–ATPase of the thermophilic bacterium, PS3, containing glutamine in place of glutamic acid in positions 190 or 201 assembles with the α and γ subunits to produce inactive complexes, Biochem. Biophys. Res. Commun. 146, 705710.
  • 35
    Matsui, T. & Yoshida, M. (1995) Expression of the wild-type and the Cys-/Trp-less α3β3γ complex of thermophilic F1–ATPase in Escherichiu coli, Biochim. Biophys. Acta 1231, 139146.
  • 36
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680685.
  • 37
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248254.
  • 38
    Yosbida, M., Sone, N., Hirata, H. & Kagawa, Y. (1977) Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits, J. Biol. Chem. 252, 33483485.
  • 39
    Yokoyama, K., Hisabori, T. & Yoshida, M. (1989) The reconstituted α3β3γ complex of the thermostable F1,–ATPase, J. Biol. Chem. 264, 2183721841.
  • 40
    Miwa, K. & Yoshida, M. (1989) The α3β3 complex, the catalytic core of F1–ATPase, Proc. Nail Acad. Sci. USA 86, 64846487.
  • 41
    Tom, R. G. & Dunn, S. D. (1986) Column centrifugation generates an intersubunit disulfide bridge in Escherichia coli F1-ATPase, Eur. J. Biochem. 161, 513518.
  • 42
    Laget, P. P. & Smith, J. B. (1979) Inhibitory properties of endogenous subunit ε in the Escherichia coli F1 ATPase, Arch. Biochem. Biophys. 197, 8389.
  • 43
    Sternweis, P. C. & Smith, J. B. (1980) Characterization of the inhibitory (ε) subunit of the proton-translocating adenosine triphosphatase from Escherichia coli, Biochemistry 19, 526531.
  • 44
    Haughton, M. A. & Capaldi, R. A. (1995) Asymmetry of Escherichia coli F1–ATPase as a function of the interaction of α-β subunit pairs with the γ and ε subunits, J. Biol. Chem. 270, 2056820574.
  • 45
    Aggeler, R., Haughton, M. A. & Capaldi, R. A. (1995) Disulfide bond formation between the COOH-terminal domain of the p sub-units and the γ and ε subunits of the Escherichia coli F1–ATPase, J. Biol. Chem. 270, 91859191.
  • 46
    Rost, B. & Sander, C. (1993) Prediction of protein secondary structure at better than 70% accuracy, J. Mol. Biol. 232, 584599.
  • 47
    Vallejos, R. H., Arana, J. L. & Ravizzini, R. A. (1983) Changes in activity and structure of the chloroplast proton ATPase induced by illumination of spinach leaves, J. Biol. Chem. 255, 73177321.
  • 48
    Komatsu-Takaki, M. (1996) Energizing effects of illumination on the reactivities of lysine residues of the γ subunit of chloroplast ATP synthase, Eur. J. Biochem. 236, 470475.
  • 49
    Duncan, T. M., Bulygin, V. V., Zhou, Y., Hutcheon, M. L. & Cross, R. L. (1995) Rotation of subunits during catalysis by Escherichia coli F1-ATPase, Proc. Nutl Acad. Sci. USA 92, 1096410968.
  • 50
    Sabbert, D., Engelbrecht, S. & Junge, W. (1996) Intersubunit rotation in active F-ATPase, Nuture 381, 623625.
  • 51
    Noji, H., Yasuda, R., Kinoshita, K. Jr & Yoshida, M. (1997) Direct observation of the rotation of F1–ATPase, Nature 386, 299302.
  • 52
    Engelbrecht, S. & Junge, W. (1992) Added subunit, β of CF1 as well as γ/δ/ε restore photophosphorylation in partially CF1–depleted thylakoids, Biochim. Biophys. Acta 1140, 157162.
  • 53
    Komatsu-Takaki, M. (1993) Energy-dependent changes in the con formation of the chloroplast ATP synthase and its catalytic activity, Eur. J. Biochem. 214, 587591.
  • 54
    Grüber, G. & Capaldi, R. A. (1996) The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites, J. Biol. Chem. 271, 3262332628.
  • 55
    Capaldi, R. A., Aggeler, R., Wilkens, S. & Grüber, G. (1996) Structural changes in the γ and ε subunits of the Escherichiu coli F1 F0-type ATPase during energy coupling, J. Bioenerg. Biomembr. 28, 397402.
  • 56
    Walker, J. E., Fearnley, I. M., Gay, N. J., Gibson, B. W., Northrop, F. D., Powell, S. J., Runswick, M. J., Saraste, M. & Tybulewicz, V. L. J. (1985) Primary structure and subunit stoichiometry of F1–ATPase from bovine mitochondria, J. Mol. Biol. 184, 677701.