• Pseudomonas oleovorans;
  • poly[(R)-3-hydroxyalkanoate];
  • granule;
  • polymerase C1;
  • enzyme activity


  1. Top of page
  2. Abstract
  3. References

A newly developed in vitro activity assay for medium-chain-length(mcl)-poly(3-hydroxyalkanoate) polymerases is described. Polymerase C1 of Pseudomonas oleovorans GPo1 attached to isolated granules was used as model enzyme. A direct correlation was found between (R)-3-hydroxyoctanoylCoA depletion and poly(3-hydroxyalkanoate) synthesis due to polymerase C1 activity. Highest activities of 1.13 U/mg granule bound protein and highest specific activities of 2.3 U/mg polymerase C1 were determined towards (RS)-3-hydroxyoctanoylCoA. A first determination of a Km value for mcl poly(3-hydroxyalkanoate) polymerases was performed leading to an estimated Km of 0.16 (± 0.1) mM for granule bound polymerase C1 with (RS)-3-hydroxyoctanoylCoA as substrate. Polymerase C1 showed no activity towards (RS)-3-hydroxybutyrylCoA and a specific activity of 0.28 U/mg polymerase C1 for (R)-3-hydroxyvalerylCoA. (R)-3-HydroxyoctanoylCoA and a mixture of (RS)-3-hydroxyoctanoylCoA were both depleted for more than 75% by granule-bound polymerase C1, suggesting a non-rate-limiting epimerase activity attached to poly(3-hydroxyalkanoate) granules isolated from Pseudomonas putida GPp104[pGEc405]. Whereas no relationship was found between the activity of granule-bound polymerase C1 and poly(3-hydroxyalkanoate) content of the granules, higher activities were measured when a higher substrate concentration or more enzyme was present in the in vitro activity assay.






granule-associated protein


medium-chain length


matrix-assisted-laser desorption ionization time-of-flight


Acid-CoA ligase (EC


  1. Top of page
  2. Abstract
  3. References
  • Cornish-Bowden, A. & Eisenthal, R. (1974) Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods, Biochem. J. 139, 721.
  • Davison, J., Heusterpreute, M., Chevalier, N., Ha-Thi, V. & Brunel, F. (1987) Vectors with restriction site banks, V. pJRD215, a wide host range cosmid vector with multiple cloning sites, Gene 51, 275280.DOI: 10.1016/0378-1119(87)90316-7
  • De Smet, M. J., Eggink, G., Witholt, B., Kingma, J. & Wynberg, H. (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane, J. Bacteriol. 154, 870878.
  • Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti, Proc. Natl Acad. Sci. USA 77, 73477351.
  • Eggink, G., de Waard, P. & Huijberts, G. N. M. (1992) The role of fatty acid biosynthesis and degradation in the supply of substrates for poly(3-hydroxyalkanoate) formation in Pseudomonas putida, FEMS Microbiol. Rev. 103, 159164.DOI: 10.1016/0378-1097(92)90305-8
  • Eisenthal, R. & Danson, M. J. (1992) Enzyme assays: a practical approach, 1st edn, Oxford University Press, New York .
  • Ellman, G. L. (1959) Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82, 7077.
  • Fritzsche, K., Lenz, R. W. & Fuller, R. C. (1990) An unusual bacterial polyester with a phenyl pendant group, Makromol. Chem. 191, 19571965.DOI: 10.1002/macp.1990.021910821
  • Gerngross, T. U., Snell, K. D., Peoples, O. P., Sinskey, A. J., Csuhai, E., Masamune, S. & Stubbe, J. (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity, Biochemistry 33, 93119320.
  • Gerngross, T. U. & Martin, D. P. (1995) Enzyme-catalyzed synthesis of poly[(R)-(–)-3-hydroxybutyrate]: formation of macroscopic granules in vitro, Proc. Natl Acad. Sci. USA 92, 62796283.
  • Harlow, E. & Lane, D. (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory, New York .
  • Haywood, G. W., Anderson, A. J. & Dawes, E. A. (1989) The importance of PHB-synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus, FEMS Microbiol. Lett. 57, 16.DOI: 10.1016/0378-1097(89)90136-5
  • Huijberts, G. N. M., de Rijk, T. C., de Waard, P. & Eggink, G. (1995) 13C Nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis, J. Bacteriol. 176, 16611666.
  • Huisman, G. W. (1991) Poly(3-hydroxyalkanoates) from Pseudomonas putida, From DNA to plastic, PhD thesis, Rijksuniversiteit Groningen, The Netherlands .
  • Huisman, G. W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P. & Witholt, B. (1991) Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans, J. Biol. Chem. 266, 21912198.
  • Huisman, G. W., Wonink, E., de Koning, G. J. M., Preusting, H. & Witholt, B. (1992) Synthesis of poly (3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains, Appl. Microbiol. Biotechnol. 38, 15.
  • Imamura, S., Ueda, S., Mizugaki, M. & Kawaguchi, A. (1990) Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system, J. Biochem. (Tokyo) 107, 184189.
  • Kaunzinger, A., Podebrad, F., Liske, R., Maas, B., Dietrich, A. & Mosandl, A. (1995) Stereochemical differentiation and simultaneous analysis of 3-, 4-, and 5-hydroxyalkanoic acids from biopolyesters by multidimensional gas chromatography, HRC J. High Resolut. Chromatogr. 18, 4953.
  • Kraak, M. N., Smits, T. H. M., Kessler, B. & Witholt, B. (1997) Polymerase C1 levels and poly(R-3-hydroxyalkanoate) (PHA) synthesis in wild-type and recombinant Pseudomonas strains, J. Bacteriol. 179, 49854991.
  • Kunau, W. H., Dommes, V. & Schulz, H. (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress, Prog. Lipid Res. 34, 267342.DOI: 10.1016/0163-7827(95)00011-9
  • Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4, Nature 227, 680685.
  • Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P., Eggink, G. & Witholt, B. (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates, Appl. Environ. Microbiol. 54, 29242932.
  • Lemoigne, M. (1926) Produits de deshydration et de polymerisation de l'acide β-oxybutyrique, Bull. Soc. Chim. Biol. 8, 770782.
  • Lenz, R. W., Kim, B. W., Ulmer, H. W., Fritzsche, K., Knee, E. & Fuller, R. C. (1990) in Novel biodegradable polymers (Dawes, E. A., ed.) pp. 2335, Kluwer Academic Publishers, Dordrecht .
  • Pawar, S. & Schulz, H. (1981) The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli, J. Biol. Chem. 256, 38943899.
  • Preusting, H., Kingma, J. & Witholt, B. (1991) Physiology and polyester formation of Pseudomonas oleovorans in continuous two-liquid-phase cultures, Enz. Microbiol. Technol. 13, 770780.DOI: 10.1016/0141-0229(91)90059-J
  • Preusting, H., Nijenhuis, A. & Witholt, B. (1990) Physical characteristics of poly(3-hydroxyalkanoates) and poly(3-hydroxyalkenoates) produced by Pseudomonas oleovorans grown on aliphatic hydrocarbons, Macromolecules 23, 42204224.
  • Steinbüchel, A., Aerts, K., Babel, W., Follner, C., Liebergesell, M., Madkour, M. H., Mayer, E., Pieper-Fürst, U., Pries, A., Valentin, H. E. & Wieczorek, R. (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions, Can. J. Microbiol. 41, 94105.
  • Steinbüchel, A. & Valentin, H. E. (1995) Diversity of bacterial polyhydroxyalkanoic acids, FEMS Microbiol. Lett. 128, 219228.DOI: 10.1016/0378-1097(95)00125-O
  • Stuart, E. S., Lenz, R. W. & Fuller, R. C. (1995) The ordered macromolecular surface of polyester inclusion bodies in Pseudomonas oleovorans, Can. J. Microbiol. 41, 8493.
  • Van der Leij, F. R. & Witholt, B. (1995) Strategies for the sustainable production of new biodegradable polyesters in plants: a review, Can. J. Microbiol. 41, 222238.
  • Wieczorek, R., Pries, A., Steinbüchel, A. & Mayer, F. (1995) Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus, J. Bacteriol. 177, 24252435.
  • Yanisch-Perron, C., Vieira, J. & Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors, Gene (Amst.) 33, 103119.