• 1
    Que, L. Jr & Ho, R. Y. N. (1996) Dioxygen activation by enzymes with mononuclear non-heme iron active sites, Chem. Rev. 96, 26072624.
  • 2
    Kappock, T. J. & Caradonna, J. P. (1996) Pterin-dependent amino acid hydroxylases, Chem. Rev. 96, 26592756.
  • 3
    Han, S., Eltis, L. D., Timmis, K. N., Muchmore, S. W. & Bolin, J. T. (1995) Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading Pseudomonad, Science 270, 976980.
  • 4
    Senda, T., Sugiyama, K., Narita, H., Yamamoto, T., Kimbara, K., Fukuda, M., Sato, M., Yano, K. & Mitsui, Y. (1996) Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102, J. Mol. Biol. 255, 735752.
  • 5
    Goodwill, K. E., Sabatier, C., Marks, C., Raag, R., Fitzpatrick, P. F. & Stevens, R. C. (1997) Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases, Nat. Struct. Biol. 4, 578585.
  • 6
    Minor, W., Steczko, J., Stec, B., Otwinowski, Z., Bolin, J. T., Walter, R. & Axelrod, B. (1996) Crystal structure of soybean lipoxygenase L-1 at 1.4 Å resolution, Biochemistry 35, 1068710701.
  • 7
    Lah, M. S., Dixon, M. M., Pattridge, K. A., Starlings, W. C., Fee, J. A. & Ludwig, M. L. (1995) Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus, Biochemistry 34, 16461660.
  • 8
    Roach, P. L., Clifton, I. J., Fülöp, V., Harlos, K., Barton, G. J., Hajdu, J., Andersson, I., Schofield, C. J. & Baldwin, J. E. (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes, Nature 375, 700704.
  • 9
    Roach, P. L., Clifton, I. J., Hensgens, C. M. H., Shibata, N., Schofield, C. J., Hajdu, J. & Baldwin, J. E. (1997) Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation, Nature 387, 827830.
  • 10
    Eltis, L. D. & Bolin, J. T. (1996) Evolutionary relationships among extradiol dioxygenases, J. Bacteriol. 178, 59305937.
  • 11
    Boldt, Y. R., Whiting, A. K., Wagner, M. L., Sadowsky, M. J., Que, L. Jr & Wackett, L. P. (1997) Manganese(II) active site mutants of 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis strain CM-2, Biochemistry 36, 21472153.
  • 12
    Shu, L., Chiou, Y.-M., Orville, A. M., Miller, M. A., Lipscomb, J. D. & Que, L. Jr (1995) X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism, Biochemistry 34, 66496659.
  • 13
    Arciero, D. M., Orville, A. M. & Lipscomb, J. D. (1985) [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase, J. Biol. Chem. 260, 1403514044.
  • 14
    Michaud-Soret, I., Andersson, K. K., Que, L. Jr & Haavik, J. (1995) Resonance Raman studies of catecholate and phenolate complexes of recombinant human tyrosine hydroxylase, Biochemistry 34, 55045510.
  • 15
    Randall, C. R., Zang, Y., True, A. E., Que, L. Jr, Charnock, J. M., Garner, C. D., Fujishima, Y., Schofield, C. J. & Baldwin, J. E. (1993) X-ray absorption studies of the ferrous active site of isopenicillin N synthase and related model complexes. Biochemistry 32, 66646673.
  • 16
    Chen, V. J., Orville, A. M., Harpel, M. R., Frolik, C. A., Surerus, K. K., Münck, E. & Lipscomb, J. D. (1989) Spectroscopic studies of isopenicillin N synthase: a mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate, J. Biol. Chem. 264, 2167721681.
  • 17
    Orville, A. M., Chen, V. J., Kriauciunas, A., Harpel, M. R., Fox, B. G., Münck, E. & Lipscomb, J. D. (1992) Thiolate ligation of the active site Fe2+ of isopenicillin N synthase derives from substrate rather than endogenous cysteine: spectroscopic studies of site-specific Cys[RIGHTWARDS ARROW]Ser mutated enzymes, Biochemistry 31, 46024612.
  • 18
    Landman, O., Borovok, I., Aharonowitz, Y. & Cohen, G. (1997) The glutamine ligand in the ferrous iron active site of isopenicillin N synthase of Streptomyces jumonjinensis is not essential for catalysis, FEBS Lett. 405, 172174.
  • 19
    Sami, M., Brown, T. J. N., Roach, P. L., Schofield, C. J. & Baldwin, J. E. (1997) Glutamine-330 is not essential for activity in isopenicillin N synthase from Aspergillus nidulans, FEBS Lett. 405, 191194.
  • 20
    Borovok, I., Landman, O., Kreisberg-Zakarin, R., Aharonowitz, Y. & Cohen, G. (1996) Ferrous active site of isopenicillin N synthase: genetic and sequence analysis of the endogenous ligands, Biochemistry 35, 19811987.
  • 21
    Tan, D. S. H. & Sim, T.-S. (1996) Functional analysis of conserved histidine residues in Cephalosporium acremonium isopenicillin N synthase by site-directed mutagenesis, J. Biol. Chem. 271, 889894.
  • 22
    McGinnis, K., Ku, G. M., VanDusen, W. J., Fu, J., Garsky, V., Stern, A. M. & Friedman, P. A. (1996) Site-directed mutagenesis of residues in a conserved region of bovine aspartyl (asparaginyl) β-hydroxylase: evidence that histidine 675 has a role in binding Fe2+, Biochemistry 35, 39573962.
  • 23
    Lamberg, A., Pihlajaniemi, T. & Kivirikko, K. I. (1995) Site-directed mutagenesis of the a subunit of human prolyl 4-hydroxylase, J. Biol. Chem. 270, 99269931.
  • 24
    Lay, V. J., Prescott, A. G., Thomas, P. G. & John, P. (1996) Heterolo gous expression and site-directed mutagenesis of the 1-aminocyclopropane-1-carboxylate oxidase from kiwi fruit, Eur. J. Biochem. 242, 228234.
  • 25
    Shaw, J.-F., Chou, Y.-S., Chang, R.-C. & Yang, S. F. (1996) Characterization of the ferrous ion binding sites of apple 1-aminocyclopropane-1-carboxylate oxidase by site-directed mutagenesis, Biochem. Biophys. Res. Commun. 225, 697700.
  • 26
    Myllylä, R., Günzler, V., Kivirikko, K. I. & Kaska, D. D. (1992) Modification of vertebrate and algal prolyl 4-hydroxylases and vertebrate lysyl hydroxylase by diethyl pyrocarbonate: evidence for histidine residues in the catalytic site of 2-oxoglutarate-coupled dioxygenases, Biochem. J. 286, 923927.
  • 27
    Zhang, Z., Schofield, C. J., Baldwin, J. E., Thomas, P. & John, P. (1995) Expression, purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from tomato in Escherichia coli, Biochem. J. 307, 7785.
  • 28
    Fukumori, F. & Hausinger, R. P. (1993) Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase, J. Biol. Chem. 268, 2431124317.
  • 29
    Whiting, A. K., Que, L. Jr, Saari, R. E., Hausinger, R. P., Fredrick, M. A. & McCracken, J. (1997) Metal coordination environment of a Cu(II)-substituted α -keto acid-dependent dioxygenase that degrades the herbicide 2,4-D, J. Am. Chem. Soc. 119, 34133414.
  • 30
    Scarrow, R. C., Trimitsis, M. G., Buck, C. P., Grove, G. N., Cowling, R. A. & Nelson, M. J. (1994) X-ray spectroscopy of the iron site in soybean lipoxygenase-1: changes in coordination upon oxidation or addition of methanol, Biochemistry 33, 1502315035.
  • 31
    Wolgel, S. A., Dege, J. E., Perkins-Olson, P. E., Juarez-Garcia, C. H., Crawford, R. L., Münck, E. & Lipscomb, J. D. (1993) Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase, J. Bacteriol. 175, 44144426.
  • 32
    Barlow, J. N., Zhang, Z., John, P., Baldwin, J. E. & Schofield, C. J. (1997) Inactivation of 1-aminocyclopropane-l-carboxylate oxidase involves oxidative modifications, Biochemistry 36, 35633569.
  • 33
    Hanauske-Abel, H. M. & Gunzler, V. (1982) A stereochemical concept for the catalytic mechanism of prolylhydroxylase: applicability to classification and design of inhibitors, J. Theor. Biol. 94, 421455.
  • 34
    Fitzpatrick, P. F. (1991) Steady-state kinetic mechanism of rat tyrosine hydroxylase, Biochemistry 30, 36583662.
  • 35
    Glickman, M. H. & Klinman, J. P. (1996) Lipoxygenase reaction mechanism: demonstration that hydrogen abstraction from substrate precedes dioxygen binding during catalytic turnover, Biochemistry 35, 1288212892.