• erythropoiesis;
  • colony-forming unit-erythroid;
  • erythropoietin-receptor;
  • signal transduction;
  • inositolphospholipid 3-kinase;
  • Janus kinase 2;
  • signal transducer activator of transcription;
  • mitogen-activated protein kinase;
  • KIT


  1. Top of page
  2. Abstract
  3. References

Red blood cells arise continuously from pluripotent stem cells which mature and become functionally specialized upon commitment to the erythroid lineage. In mammals, the key regulator of this process is the hormone erythropoietin (EPO). Hormone binding to the cognate receptor, the erythropoietin receptor (EPO-R), causes receptor homodimerization and transiently triggers tyrosine phosphorylation within target cells. Although the EPO-R lacks intrinsic enzymatic activity it couples, presumably sequentially, to the protein tyrosine kinase receptor c-KIT and the cytosolic protein tyrosine kinase JAK2. Signaling through the EPO-R is promoted by tyrosine phosphorylation of the cytosolic domain and the recruitment of secondary signaling molecules such as the lipid kinase inositolphospholipid 3-kinase (phosphatidylinositol 3-kinase) and protein tyrosine phosphatase SHP-2 to the activated receptor. Complex formation of the activated EPO-R with the protein tyrosine phosphatase SHP-1 terminates signaling. In primary fetal liver cells redundant signals emanating from phosphotyrosine residues in the EPO-R support formation of erythroid colonies in vitro. However, since the last tyrosine residue in the cytosolic domain of the EPO-R, Y479, uniquely supports in the absence of other tyrosine residues an almost normal level of colony-forming unit-erythroid (CFU-E) colony formation, Y479 represents one of the key residues required in vivo for erythroid proliferation and differentiation. The signal emanating from Y479 involves sequential EPO-induced recruitment of phosphoinositol lipid 3-kinase to the EPO-R and activation of mitogen-activated-protein(MAP)kinase activity. The MAP-kinase signaling cascade could serve as an intracellular switch integrating signals mediated by several phosphotyrosine residues in the cytosolic domain of the EPO-R and provide a possible explanation for partial redundancy in signaling.




erythropoietin receptor


mitogen-activated protein


mitogen-activated-protein-kinase kinase


Janus kinase


SH2 domain containing protein tyrosine phosphatase


colony-forming unit-erythroid


burst-forming unit-erythroid




granulocyte/macrophage colony-stimulating factor


stem cell factor


domain src homology 2 domain


domain src homology 3 domain


signal transducer activator of transcription


phosphotyrosine binding domain


son of the sevenless


glutathione S -transferase


phospholipase Cγ


protein kinase C


plateletderived growth factor


recombinant human


inositol 1,4,5-trisphosphate


  1. Top of page
  2. Abstract
  3. References
  • 1
    Metcalf, D. (1989) The molecular control of cell division, differentiation commitment and maturation in hematopoietic cells, Nature 339, 2730.DOI: 10.1038/339027a0
  • 2
    D'Andrea, A. D., Fasman, G. D. & Lodish, H. F. (1989) Erythropoietin receptor and interleukin-2 receptor β chain: a new receptor family, Cell 58, 10231024.
  • 3
    Bazan, J. F. (1990) Structural design and molecular evolution of a cytokine receptor superfamily, Proc. Natl Acad. Sci. USA 87, 69346938.
  • 4
    Cosman, D., Lyman, S. D., Idzerda, R. L., Beckmann, M. P., Park, L. S., Goodwin, R. G. & March, C. J. (1990) A new cytokine receptor superfamily, Trends Biochem. Sci. 15, 265270.
  • 5
    Krantz, S. B. (1991) Erythropoietin, Blood 77, 419434.
  • 6
    Koury, M. J. & Bondurant, M. C. (1988) Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells, J. Cell. Physiol. 137, 6573.
  • 7
    Koury, M. J., Bondurant, M. C., Graber, S. E. & Sawyer, S. T. (1988) Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta, J. Clin. Invest. 82, 154159.
  • 8
    Koury, S. T., Bondurant, M. C., & Koury, M. J. (1988) Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization, Blood 71, 524527.
  • 9
    Koury, S. T., Bondurant, M. C., Koury, M. J. & Semenza, G. L. (1991) Localization of cells producing erythropoietin in murine liver by in situ hybridizytion, Blood 77, 24972503.
  • 10
    Tavassoli, M. & Yoffey, J. M. (1983) Bone marrow: structure and function, Alan R. Liss, Inc., New York .
  • 11
    Wu, H., Liu, X., Jaenisch, R. & Lodish, K. F. (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor, Cell 83, 5967.
  • 12
    Lin, C. S., Lim, S. K., D'Agati, V. & Costantini, F. (1996) Differential effects of erythropoietin receptor gene disruption on primitive and definitive erythropoiesis, Genes & Dev. 10, 154164.
  • 13
    Cole, R. J. & Paul, J. (1966) The effects of erythropoietin on haemsynthesis in mouse yolk sac and cultured foetal liver cells, J. Embryol. Exp. Morphol. 15, 245260.
  • 14
    Metcalf, D. (1984) The hematopoietic colony stimulating factors, Elsevier, Amsterdam , New York , Oxford .
  • 15
    Gregory, C. J. & Eaves, A. C. (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biological properties, Blood 51, 527537.
  • 16
    Gregory, C. J. & Eaves, A. C. (1977) Human marrow cells capable of erythroipoietic differentiation in vitro: definition of three erythroid colony responses, Blood 49, 855864.
  • 17
    Emerson, S. G., Sieff, C. A., Wang, E. A., Wong, G. G., Clark, S. C. & Nathan, D. G. (1985) Purification of fetal hematopoietic progenitors and demonstration of recombinant multipotential colony-stimulating activity, J. Clin. Invest. 76, 12861290.
  • 18
    Sokol, L., Luhovy, M., Guan, Y., Prchal, J., Semenza, G. & Prchal, J. (1995) Primary familial polycythemia: a frameshift mutation in the erythropoietin receptor gene and increased sensitivity of erythroid progenitors to erythropoietin. Blood 86, 1522.
  • 19
    D'Andrea, A. D., Lodish, H. F. & Wong, G. G. (1989) Expression cloning of the murine erythropoietin receptor, Cell 57, 277285.
  • 20
    Miyajima, A., Kitamura, T., Harada, N., Yokota, T. & Arai, K. (1992) Cytokine receptors and signal transduction, Annu. Rev. Immunol. 10, 295331.DOI: 10.1146/annurev.iy.10.040192.001455
  • 21
    Watowich, S. S., Yoshimura, A., Longmore, G. D., Hilton, D. J., Yoshimura, Y. & Lodish, H. F. (1992) Homodimerization and constitutive activation of the erythropoietin receptor, Proc. Natl Acad. Sci. USA 89, 21402144.
  • 22
    Livnah, O., Stura, E., Johnson, D. L., Middleton, S. A., Mulcahy, L. S., Wrighton, N. C., Dower, W. J., Jolliffe, L. K. & Wilson, I. A. (1996) Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 Å, Science 273, 464470.
  • 23
    Wrighton, N. C., Farrell, F. X., Chang, R., Kashyap, A. K., Barbone, F. P., Mulcahy, L. S., Johnson, D. L., Barrett, R. W., Jolliffe, L. K. & Dower, W. J. (1996) Small peptides as potent mimetics of the protein hormone erythropoietin, Science 273, 458463.
  • 24
    Damen, J. E. & Krystal, G. (1996) Early events in erythropoietin-induced signaling, Exp. Hematol. 24, 14551459.
  • 25
    Miura, O., D'Andrea, A. D., Kabat, D. & Ihle, J. N. (1991) Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis, Mol. Cell Biol. 11, 48954902.
  • 26
    Quelle, F. W. & Wojchowski, D. M. (1991) Proliferative action of erythropoietin is associated with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells, J. Biol. Chem. 266, 609614.
  • 27
    Dusanter-Fourt, I., Casadevall, N., Lacombe, C., Muller, O., Billat, C., Fischer, S. & Mayeux, P. (1992) Erythropoietin induces the tyrosine phosphorylation of its own receptor in human erythropoietin-responsive cells, J. Biol. Chem. 267, 1067010675.
  • 28
    Linnekin, D., Evans, G. A., D'Andrea, A. & Farrar, W. L. (1992) Association of the erythropoietin receptor with protein tyrosine kinase activity, Proc. Natl Acad. Sci. USA 89, 62376241.
  • 29
    Argetsinger, L. S., Campbell, G. S., Yang, X., Witthuhn, B. A., Silvennoinen, O., Ihle, J. N. & Carter-Su, C. (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase, Cell 74, 237244.
  • 30
    Witthuhn, B. A., Quelle, F. W., Silvennoinen, O., Yi, T., Tang, B., Miura, O. & Ihle, J. N. (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin, Cell 74, 227236.
  • 31
    Wilks, A. F., Harpur, A. G., Kurban, R. R., Ralph, S. J., Zurcher, G. & Ziemiecki, A. (1991) Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase, Mol. Cell. Biol. 11, 20572065.
  • 32
    Takahashi, T. & Shirasawa, T. (1994) Molecular cloning of rat JAK3, a novel member of the JAK family of protein tyrosine kinases, FEBS Lett. 342, 124128.DOI: 10.1016/0014-5793(94)80485-0
  • 33
    Firmbach-Kraft, I., Byers, M., Shows, T., Dalla-Favera, R. & Krolewski, J. J. (1990) Tyk2, prototype of a novel class of non-receptor tyrosine kinase genes, Oncogens 5, 13291352.
  • 34
    Miura, O., Cleveland, J. L. & Ihle, J. N. (1993) Inactivation of eryth- ropoietin receptor function by point mutations in a region having homology with other cytokine receptors, Mol. Cell. Biol. 13, 17881795.
  • 35
    Nakamura, N., Chin, H., Miyasaka, N. & Miura, O. (1996) An epidermal growth factor receptor, JAK2 tyrosine kinase domain chimera induces tyrosin phosphorylation of STAT5 and transduces a growth signal in hematopoietic cells, J. Biol. Chem. 271, 1948319488.
  • 36
    Qiu, F., Ray, P., Brown, K., Barker, P. E., Jhanwar, S., Ruddle, F. R. & Besmer, P. (1988) Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family-oncogenic activation of v-kit involves deletion of extracellular domain and C-terminus, EMBO J. 7, 10031011.
  • 37
    Nocka, K., Tan, J. C., Chiu, E., Chu, T. Y., Ray, P., Traktman, P. & Besmer, P. (1990) Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W, EMBO J. 9, 18051813.
  • 38
    Wu, H., Klingmüller, U., Besmer, P. & Lodish, H. F. (1995) Interaction of the erythropoietin and stem cell factor receptor, Nature 377, 242246.DOI: 10.1038/377242a0
  • 39
    Schlessinger, J. (1994) SH2/SH3 signaling proteins, Curr. Opin. Genet. Dev. 4, 2430.
  • 40
    Pawson, T. & Gish, G. (1992) SH2 and SH3 domains: from structure to function, Cell 71, 359362.
  • 41
    Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R. & Soltoff, S. (1991) Oncogenes and signal transduction, Cell 64, 281302.
  • 42
    Schindler, C. & Darnell, J. E. Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway, Annu. Rev. Biochem 64, 621651.DOI: 10.1146/
  • 43
    Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Sciene 264, 14151421.
  • 44
    Quelle, F. W., Wang, D., Nosaka, T., Thierfelder, W. E., Stravopodis, D., Weinstein, Y. & Ihle, J. N. (1996) Erythropoietin induces activation of Stat5 through association with specific tyrosine residues on the receptor that are not required for mitogenic response, Mol. Cell. Biol. 16, 16221631.
  • 45
    Gobert, S., Chretien, S., Gouilleux, F., Muller, O., Pallard, C., Dusanter-Fourt, I., Groner, B., Lacombe, C., Gisselbrecht, S. & Mayeux, P. (1996) Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STATS activation, EMBO J. 15, 24342441.
  • 46
    Klingmüller, U., Bergelson, S., Hsiao, J. G. & Lodish, H. F. (1996) Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STATS, Proc. Natl Acad. Sci. USA 93, 83248328.DOI: 10.1073/pnas.93.16.8324
  • 47
    Cutler, R. L., Liu, L., Damen, J. E. & Krystal, G. (1993) Multiple cytokines induce the tyrosine phosphorylation of She and its association with Grb2 in hemopoietic cells, J. Biol. Chem. 268, 2146321465.
  • 48
    Damen, J. E., Liu, L., Cutler, R. L. & Krystal, G. (1993) Erythropoietin stimulates the tyrosine phosphorylation of She and its association with Grb2 and a 145-Kd tyrosine phosphorylated protein, Blood 82, 22962303.
  • 49
    He, T. C., Jiang, N., Zhuang, H. & Wojchowski, D. M. (1995) Erythropoietin-induced recruitment of She via a receptor phosphotyrosine-independent, Jak2-associated pathway, J. Biol. Chem. 270, 1105511061.DOI: 10.1074/jbc.270.19.11055
  • 50
    Ravichandran, K. S., Lorenz, U., Shoelson, S. E. & Burakoff, S. J. (1995) Interaction of She with Grb2 regulates association of Grb2 with mSOS, Mol. Cell. Biol. 15, 593600.
  • 51
    Marshall, C. J. (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase, Curr. Opin. Genet. Dev. 4, 8289.DOI: 10.1016/0959-437X(94)90095-7
  • 52
    Gobert, S., Duprez, V., Lacombe, C., Gisselbrecht, S. & Mayeux, P. (1995) The signal transduction pathway of erythropoietin involves three forms of mitogen-activated protein (MAP) kinase in UT7 erythroleukemia cells, Eur. J. Biochem. 234, 7583.DOI: 10.1111/j.1432-1033.1995.075_c.x
  • 53
    Sun, H. & Tonks, N. K. (1994) The coordinated action of protein tyrosine phosphatases and kinases in cell signalling, Trends Biochem. Sci. 19, 480485.DOI: 10.1016/0968-0004(94)90134-1
  • 54
    Tauchi, T., Feng, G. S., Shen, R., Hoatlin, M., Bagby, G. Jr, Kabat, D., Lu, L. & Broxmeyer, H. E. (1995) Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways, J. Biol. Chem. 270, 56315635.DOI: 10.1074/jbc.270.10.5631
  • 55
    Tauchi, T., Damen, J. E., Toyama, K., Feng, G. S., Broxmeyer, H. E. & Krystal, G. (1996) Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis, Blood 87, 44954501.
  • 56
    Bennett, A. M., Tang, T. L., Sugimoto, S. & Walsh, C. T. (1994) Binding of tyrosyl phosphorylated SH2-containing tyrosyl phosphatase SHPTP2 to Grb2/Sos1 couples platelet-derived growth factor receptor β to the Ras signaling pathways, Proc. Natl Acad. Sci. USA 91, 73357339.
  • 57
    Bennett, A. M., Hausdorff, S. R., O'Reilly, A. M., Freman, R. M. & Neel, B. G. (1996) Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression, Mol. Cell. Biol. 16, 11891202.
  • 58
    Ali, S., Chen, Z., Lebrun, J.-J., Vogel, W., Kharitonenkov, A., Kelly, P. A. & Ullrich, A. (1996) PTP1D is a positive regulator of the prolactin signal leading to β-casein promoter activation, EMBO J. 15, 135142.
  • 59
    Tang, T. L., Freeman, M., O'Reilly, A. M., Neel, B. G. & Sokol, S. Y. (1995) The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development, Cell 80, 473483.
  • 60
    Yamauchi, K., Milarski, K. L., Saltiel, A. R. & Pessin, J. E. (1995) Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling, Proc. Natl Acad. Sci. USA 92, 664668.
  • 61
    Rhee, S. G., Suh, P.-G. Ruy, S.-H. & Lee, S. Y. (1989) Studies of inositol phospholipid-specific phospholipase C, Science 244, 546550.
  • 62
    Valius, M. & Kazlauskas, A. (1993) Phospholipase C-γ1 and phosphoinositol 3 kinase are downstream mediators of the PDGF receptor's mitogenic signal, Cell 73, 321334.
  • 63
    Kim, H. K., Kim, J. W., Zilberstein, A., Margolis, B., Kim, J. G., Schlessinger, J. & Rhee, S. G. (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254, Cell 65, 435441.
  • 64
    Ren, H. Y., Komatsu, N., Shimizu, R., Okada, K. & Miura, Y. (1994) Erythropoietin induces tyrosine phosphorylation and activation of phopholipase C-1 in a human erythropoietin-dependent cell line, J. Biol. Chem. 269, 1963319638.
  • 65
    Klingmüller, U., Wu, H., Hsiao, J. G., Toker, A., Duckworth, B. C., Cantley, L. C. & Lodish, H. F. (1997) Identification of a novel pathway important for proliferation and differentiation of primary erythroid progenitors, Proc. Natl Acad. Sci. USA 94, 30163021.DOI: 10.1073/pnas.94.7.3016
  • 66
    Damen, J. E., Cutler, R. L., Jiao, H., Yi, T. & Krystal, G. (1995) Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3–kinase activity, J. Biol. Chem. 270, 2340223408.
  • 67
    Kapeller, R. & Cantley, L. C. (1994) Phosphatidylinositol 3-kinase, Bioessays 16, 565576.
  • 68
    Damen, J. E., Mui, A. L., Puil, L., Pawson, T. & Krystal, G. (1993) Phosphatidylinositol 3-kinase associates, via its Src homology 2 domains, with the activated erythropoietin receptor, Blood 81, 32043210.
  • 69
    Bos, J. L. (1995) A target for phosphoinositide 3-kinase: Akt/PKB, Trends Biochem. Sci. 20, 441442.
  • 70
    Franke, T. F., Kaplan, D. R., Cantley, L. C. & Toker, A. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate, Science 275, 665668.DOI: 10.1126/science.275.5300.665
  • 71
    Moriya, S., Kazlauskas, A., Akimoto, K., Hirai, S., Mizuno, K., Takenawa, T., Fukui, Y., Watanabe, Y., Ozaki, S. & Ohno, S. (1996) Platelet-derived growth factor activates protein kinase epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase, Proc. Natl Acad. Sci. USA 93, 151155.DOI: 10.1073/pnas.93.1.151
  • 72
    Toker, A., Meyer, M., Reddy, K. K., Falck, J. R., Aneja, R., Aneja, S., Parra, A., Burns, D. J., Balks, L. M. & Cantley, L. C. (1994) Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3, J. Biol. Chem. 269, 3235832367.
  • 73
    Karnitz, L. M., Burns, L. A., Sutor, S. L., Blenis, J. & Abrahams, R. T. (1995) Interleukin-2 triggers a novel phosphatidylinositol 3-kinase-dependent MEK activation pathway, Mol. Cell. Biol. 15, 30493057.
  • 74
    Kippel, A., Reinhard, C., Kavanaugh, W. M., Apell, G., Escobedo, M.-A. & Williams, L. T. (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activated multiple signal-transducing kinase pathway, Mol. Cell. Biol. 16, 41174127.
  • 75
    Shen, S.-H., Bastien, L., Posner, B. I. & Chrétien, P. (1991) A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases, Nature 352, 736739.DOI: 10.1038/352736a0
  • 76
    Matthews, R. J., Bowne, D. B., Flores, E. & Thomas, M. L. (1992) Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine rich sequences, Mol. Cell. Biol. 12, 23962405.
  • 77
    Plutzky, J., Neel, B. & Rosenberg, R. (1992) Isolation of a novel SRC homology 2 (SH2) containing tyrosine phosphatase, Proc. Natl Acad. Sci. USA 89, 11231127.
  • 78
    Yi, T., Cleveland, J. L. & Ihle, J. N. (1992) Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-l3, Mol. Cell. Biol. 12, 836846.
  • 79
    Yi, T., Mui, A. L.-F., Krystal, G. & Ihle, J. N. (1993) Hematopoietic cell phosphatase associates with the interleukin-3 (IL-3) receptor β chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis, Mol. Cell. Biol. 13, 75777586.
  • 80
    Yi, T. & Ihle, J. N. (1993) Association of hematopoietic cell phosphatase with c-kit after stimulation with c-kit ligand, Mol. Cell. Biol. 13, 33503358.
  • 81
    Klingmüller, U., Lorenz, U., Cantley, L. C., Neel, B. G. & Lodish, H. F. (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals, Cell 80, 729738.
  • 82
    Pei, D., Lorenz, U., Klingmüller, U., Neel, B. G. & Walsh, C. T. (1994) Intramolecular regulation of the protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains, Biochemistry 33, 1548315493.
  • 83
    Pei, D., Wang, J. & Walsh, C. T. (1996) Differential functions of the two Src homology 2 domains in the protein tyrosine phosphatase SH-PTP1, Proc. Natl Acad. Sci. USA 93, 11411145.DOI: 10.1073/pnas.93.3.1141
  • 84
    Bernstein, A., Forrester, L., Reith, A. D., Dubreuil, P. & Rottapel, R. (1991) Semin. Hematol. 28, 138142.
  • 85
    Wu, H., Klingmüller, U., Acurio, A., Hsiao, J. G. & Lodish, H. F. (1997) Functional interaction of the erythropoietin and stem cell factor receptors is essential for erythroid colony formation, Proc. Natl Acad. Sci. USA 94, 18061810.DOI: 10.1073/pnas.94.5.1806
  • 86
    Tsui, H. W., Siminovitch, K. A., deSouza, L. & Tsui, F. W. L. (1993) Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene, Nature Genet. 4, 124129.DOI: 10.1038/ng0693-124
  • 87
    Shultz, L. D., Schweitzer, P. A., Rajan, T. V., Yi, T., Ihle, J. N., Matthews, R. J., Thomas, M. L. & Beier, D. R. (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein phosphatase (HCPH) gene, Cell 73, 14451454.
  • 88
    van Zant, G. & Schultz, L. (1989) Hematologic abnormalities of the immunodeficient mouse mutant, viable motheaten (mev), Exp. Hematol. 17, 8187.
  • 89
    de la Chapelle, A., Traskelin, A.-L. & Juvonen, E. (1993) Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis, Proc. Natl Acad. Sci. USA 90, 44954499.
  • 90
    de la Chapelle, A., Sistonen, P., Lehvaslaiho, H., Ikkala, E. & Juvonen, E. (1993) Familial erythrocytosis genetically linked to erythropoietin receptor gene, Lancet 341, 8284.DOI: 10.1016/0140-6736(93)92558-B