• 1
    Garczynski, S.F., Crim, J.W. & Adang, M.J. (1991) Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57, 28162820.
  • 2
    Van Rie, J., Jansens, S., Hofte, H., Degheele, D. & Van Mellaert, H. (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol. 56, 13781385.
  • 3
    Hofmann, C., Vanderbruggen, H., Hèofte, H., Van Rie, J., Jansens, S. & Van Mellaert, H. (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl Acad. Sci. USA 85, 78447848.
  • 4
    Whalon, M.E. & Wingerd, B.A. (2003) Bt: Mode of action and use. Arch. Insect Biochem. Physiol. 54, 200211.
  • 5
    Jurat-Fuentes, J.L. & Adang, M.J. (2001) Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol. 67, 323329.
  • 6
    Van Rie, J., Jansens, S., Hèofte, H., Degheele, D., & Van Mellaert, H. (1989) Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur. J. Biochem. 186, 239247.
  • 7
    Banks, D.J., Jurat-Fuentes, J.L., Dean, D.H. & Adang, M.J. (2001) Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated. Insect Biochem. Molec. Biol. 31, 909918.
  • 8
    Luo, K., Sangadala, S., Masson, L., Mazza, A., Brousseau, R. & Adang, M.J. (1997) The Heliothis virescens 170 kDa aminopeptidase functions as ‘receptor A’ by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation. Insect Biochem. Molec. Biol. 27, 735743.
  • 9
    Oltean, D.I., Pullikuth, A.K., Lee, H.K. & Gill, S.S. (1999) Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA. Appl. Environ. Microbiol. 65, 47604766.
  • 10
    Gahan, L.J., Gould, F. & Heckel, D.G. (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293, 857860.
  • 11
    Jurat-Fuentes, J.L., Gould, F.L. & Adang, M.J. (2002) Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Appl. Environ. Microbiol. 68, 57115717.
  • 12
    Mohammed, S.I., Johnson, D.E. & Aronson, A.I. (1996) Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 62, 41684173.
  • 13
    McNall, R.J. & Adang, M.J. (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem. Molec. Biol. 33, 9991010.
  • 14
    Takesue, Y., Yokota, K., Miyajima, K., Taguchi, R. & Ikezawa, H. (1989) Membrane anchors of alkaline phosphatase and trehalase associated with the plasma membrane of larval midgut epithelial cells of the silkworm, Bombyx mori. J. Biochem. 105, 9981001.
  • 15
    Ikezawa, H., Yamanegi, M., Taguchi, R., Miyashita, T. & Ohyabu, T. (1976) Studies on phosphatidylinositol phosphodiesterase (phospholipase-C type) of Bacillus cereus. 1. Purification, properties and phosphatase-releasing activity. Biochim. Biophys. Acta. 450, 154164.
  • 16
    Sangadala, S., Walters, F.S., English, L.H. & Adang, M.J. (1994) A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J. Biol. Chem. 269, 1008810092.
  • 17
    English, L. & Readdy, T.L. (1989) Delta endotoxin inhibits a phosphatase in midgut epithelial membranes of Heliothis virescens. Insect Biochem. 19, 145152.
  • 18
    Gould, F., Anderson, A., Reynolds, A., Bumgarner, L. & Moar, W. (1995) Selection and genetic analysis of a Heliothis virescens (Lepidoptera: noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88, 15451559.
  • 19
    Lee, M.K., Rajamohan, F., Gould, F. & Dean, D.H. (1995) Resistance to Bacillus thuringiensis CryIA δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61, 38363842.
  • 20
    Wolfersberger, M.G., Luthy, P., Maurer, A., Parenti, P., Sacchi, V.F., Giordana, B. & Hanozet, G.M. (1987) Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86A, 301308.
  • 21
    Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • 22
    Lee, M.K., Milne, R.E., Ge, A.Z. & Dean, D.H. (1992) Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. J. Biol. Chem. 267, 31153121.
  • 23
    Lee, M.K., You, T.H., Gould, F.L., Dean, D.H. (1999) Identification of residues in domain III of Bacillus thuringiensis Cry1Ac toxin that affect binding and toxicity. Appl. Environ. Microbiol. 65, 45134520.
  • 24
    Luo, K., Banks, D. & Adang, M.J. (1999) Toxicity, binding and permeability analyses of four Bacillus thuringiensis Cry1 δ-endotoxins by use of brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65, 457464.
  • 25
    Schumacher, C. & von Tscharner, V. (1994) Practical instructions for radioactively labeled ligand receptor binding studies. Anal. Biochem. 222, 262269.
  • 26
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • 27
    Azuma, M. & Eguchi, M. (1989) Discrete localization of distinct alkaline phosphatase isozymes in the cell surface of silkworm midgut epithelium. J. Exp. Zool. 251, 108112.
  • 28
    De Boeck, H., Lis, H., van Tilbeurgh, H., Sharon, N. & Loontien, F.G. (1984) Binding of simple carbohydrate and some of their chromophoric derivatives to soybean agglutinin as followed by trimetric procedures and stopped flow kinetics. J. Biol. Chem. 259, 70677074.
  • 29
    Eguchi, M. (1995) Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme. Comp. Biochem. Physiol. 111B, 151162.
  • 30
    Cerneus, D., Ueffing, E., Posthuma, G., Strous, G. & van der Ende, A. (1993) Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J. Biol. Chem. 268, 31503155.
  • 31
    Zhuang, M., Oltean, D.I., Gomez, I., Pullikuth, A.K., Soberon, M., Bravo, A. & Gill, S.S. (2002) Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J. Biol. Chem. 277, 1386313872.
  • 32
    Yamamoto, H., Azuma, M. & Eguchi, M. (1991) further characterization of alkaline phosphatase isozymes in the islkworm midgut: Effects of amino acids and metal ions and comparison of sugar chains. Comp. Biochem. Physiol. 99B, 437443.
  • 33
    Debray, H., Decout, D., Strecker, G., Spik, G. & Montreuil, J. (1981) Specificity of twelve lectins towards oligosaccharides and peptides related to N-glycosylproteins. Eur. J. Biochem. 117, 4155.
  • 34
    Van den Steen, P., Rudd, P.M. Dwek, R.A. & Opdenakker, G. (1998) Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Molec. Biol. 33, 151208.
  • 35
    Wilson, I.B.H. (2002) Glycosylation of proteins in plants and invertebrates. Curr. Opin. Struct. Biol. 12, 569577.
  • 36
    Samuel, J.E., Perera L.P., Ward, S., O'Brien, A.D., Ginsburg V. & Krivan, H.C. (1990) Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect. Immun. 58, 611618.
  • 37
    Menezes, C.A., Amianti, J., Harayama, H.S., Koga, P.C.M., Trabulsi, L.R. & Piazza, R.M.F. (2002) Inhibition of Escherichia coli heat-labile enterotoxin by neoglycoprotein and anti-lectin antibodies which mimic GM1 receptor. FEMS Microbiol Lett. 216, 6770.
  • 38
    Burton, S.L., Ellar, D.J., Li, J. & Derbyshire, D.J. (1999) N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287, 10111022.
  • 39
    Sangadala, S., Azadi, P., Carlson, R. & Adang, M.J. (2001) Carbohydrate analyses of Manduca sexta aminopeptidase N, co-purifying neutral lipids and their functional interactions with Bacillus thuringiensis Cry1Ac toxin. Insect Biochem. Mol. Biol. 32, 97107.
  • 40
    Knowles, B.H., Knight, P.J. & Ellar, D.J. (1991) N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc. R. Soc. Lond. Series B. Biol. Sci. 245, 3135.
  • 41
    Derbyshire, D.J., Ellar, D.J. & Li, J. (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-d-galactosamine. Acta Crystallogr. D Biol. Crystallogr. 57, 19381944.
  • 42
    Kang, S., Cummings, R.D. & McCall, J.W. (1993) Characterization of the N-linked oligosaccharides in glycoproteins synthesized by microfilariae of Dirofilaria immitis. J. Parasitol. 79, 815828.
  • 43
    Wilkins, S. & Billingsley, P.F. (2001) Partial characterization of oligosaccharides expressed on midgut microvillar proteins of the mosquito, Anopheles stephensi Liston. Insect Biochem. Mol. Biol. 31, 937948.
  • 44
    Van Die, I., van Tetering, A., Bakker, H., van den Eijnden D.H. & Joziasse D.H. (1996) Glycosylation in lepidopteran insect cells: identification of a β1,4-N-acetylgalactosaminyltransferase involved in the synthesis of complex-type oligosaccharide chains. Glycobiology 6, 157164.
  • 45
    Kuik, J.A.V., Sijbesma, R.P., Kamerling, J.P., Vliegenthart, J.F. & Wood, E.J. (1987) Primary structure determination of seven novel N-linked carbohydrate chains derived from hemocyanin of Lymnaea stagnalis. 3-O-methyl-d-galactose and N-acetyl-d-galactosamine as constituents of xylose-containing N-linked oligosaccharides in an animal glycoprotein. Eur. J.Biochem. 169, 399411.
  • 46
    Sato, T., Furukawa, K., Greenwalt, D.E. & Kobata, A. (1993) Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAcβ1,4GlcNAc groups. J. Biochem. 114, 890900.
  • 47
    Nyame, K., Smith, D., Damian, R. & Cummings, R. (1989) Complex-type asparagine-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni adult males contain terminal beta-linked N-acetylgalactosamine. J. Biol. Chem. 264, 32353243.
  • 48
    Kubelka, V., Altmann, F. & Marz, L. (1995) The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconjugate J. 12, 7783.
  • 49
    Cundell, D.R. & Tuomanen, E.I. (1994) Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Microbial Pathogenesis. 17, 361374.
  • 50
    Wenneras, C., Neeser, J. & Svennerholm, A. (1995) Binding of the fibrillar CS3 adhesin of enterotoxigenic Escherichia coli to rabbit intestinal glycoproteins is competitively prevented by GalNAcbeta1–4Gal-containing glycoconjugates. Infect. Immun. 63, 640646.
  • 51
    Nelson, K.L. & Buckley, J.T. (2000) Channel formation by the glycosylphosphatidylinositol-anchored protein binding toxin aerolysin is not promoted by lipid rafts. J. Biol. Chem. 275, 1983919843.
  • 52
    Fukushima, K., Ikehara, Y., Kanai, M., Kochibe, N., Kuroki, M. & Yamashita, K. (2003) A {beta}-N-acetylglucosaminyl phosphate diester residue is attached to the glycosylphosphatidylinositol anchor of human placental alkaline phosphatase: a target of the channel-forming toxin aerolysin. J. Biol. Chem. 278, 3629636303.
  • 53
    Griffitts, J.S., Huffman, D.L., Whitacre, J.L., Barrows, B.D., Marroquin, L.D., Muller, R., Brown, J.R., Hennet, T., Esko, J.D. & Aroian, R.V. (2003) Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin–host interactions. J. Biol. Chem. 278, 4559445602.
  • 54
    Beckman, L. & Johnson, F.M. (1964) Variations in larval alkaline phosphatase controlled by Aph alleles in Drosophila melanogaster. Genetics 49, 829835.
  • 55
    Igbokwe, E.C. & Mills, M. (1982) Electrophoretic variability in the phosphatase system of the yellow-fever mosquito, Aedes aegypti. Comp. Biochem. Physiol. 73B, 457458.
  • 56
    Takeda, S., Azuma, M., Itoh, M. & Eguchi, M. (1993) The strain difference and analysis of polymorphic nature of membrane-bound alkaline-phosphatase in the midgut epithelium of the silkworm, Bombyx-Mori. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 104, 8189.
  • 57
    Itoh, M., Kanamori, Y., Takao, M. & Eguchi, M. (1999) Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut. Insect Biochem. Mol. Biol. 29, 121129.
  • 58
    Tabashnik, B.E., Carriere, Y., Dennehy, T.J., Morin, S., Sisterson, M.S., Roush, R.T., Shelton, A.M. & Zhao, J.-Z. (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J. Econ. Entomol. 96, 10311038.
  • 59
    Chang, W., Zachow, K. & Bentley, D. (1993) Expression of epithelial alkaline phosphatase in segmentally iterated bands during grasshopper limb morphogenesis. Development 118, 651663.
  • 60
    Lu, Y.J. & Adang, M.J. (1996) Conversion of Bacillus thuringiensis CryIAc-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phospholipase C. Insect Biochem. Mol. Biol. 226, 3340.
  • 61
    Eguchi, M., Sawaki, M. & Suzuki, Y. (1972) Multiple forms of midgut alkaline phosphatase in the silkworm: new band formation and the relationship between the midgut and digestive fluid enzymes. Insect Biochem. 2, 297304.
  • 62
    Wu, A.M., Song, S.C., Sugii, S. & Herp, A. (1997) Differential binding properties of Gal/GalNAc specific lectins available for characterization of glycoreceptors. Indian J. Biochem. Biophys. 34, 6171.