SEARCH

SEARCH BY CITATION

References

  • 1
    Tong, C.H. & Draughon, F.A. (1985) Inhibition by antimicrobial food additives of ochratoxin A production by Aspergillus sulphureus and Penicillium viridicatum. Appl. Environ. Microbiol. 49, 14071411.
  • 2
    Brock, M., Fischer, R., Linder, D. & Buckel, W. (2000) Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol. Microbiol. 35, 961973.
  • 3
    Brock, M., Darley, D., Textor, S. & Buckel, W. (2001) 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes. Eur. J. Biochem. 268, 35773586.
  • 4
    Armitt, S., McCullough, W. & Roberts, C.F. (1976) Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J. Gen. Microbiol. 92, 263282.
  • 5
    Sandeman, R.A. & Hynes, M.J. (1989) Isolation of the facA (acetyl-coenzyme A synthetase) and acuE (malate synthase) genes of Aspergillus nidulans. Mol. Gen. Genet. 218, 8792.
  • 6
    Brock, M., Maerker, C., Schutz, A., Völker, U. & Buckel, W. (2002) Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. Eur. J. Biochem. 269, 61846194.
  • 7
    Textor, S., Wendisch, V.F., De Graaf, A.A., Müller, U., Linder, M.I., Linder, D. & Buckel, W. (1997) Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch. Microbiol. 168, 428436.
  • 8
    van Rooyen, J.P., Mienie, L.J., Erasmus, E., De Wet, W.J., Ketting, D., Duran, M. & Wadman, S.K. (1994) Identification of the stereoisomeric configurations of methylcitric acid produced by si-citrate synthase and methylcitrate synthase using capillary gas chromatography-mass spectrometry. J. Inherit. Metab. Dis. 17, 738747.
  • 9
    Horswill, A.R., Dudding, A.R. & Escalante-Semerena, J.C. (2001) Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J. Biol. Chem. 276, 1909419101.
  • 10
    Cheema-Dhadli, S., Leznoff, C.C. & Halperin, M.L. (1975) Effect of 2-methylcitrate on citrate metabolism: implications for the management of patients with propionic acidemia and methylmalonic aciduria. Pediatr. Res. 9, 905908.
  • 11
    Kuhara, T., Ohse, M., Inoue, Y., Yorifuji, T., Sakura, N., Mitsubuchi, H., Endo, F. & Ishimatu, J. (2002) Gas chromatographic-mass spectrometric newborn screening for propionic acidaemia by targeting methylcitrate in dried filter-paper urine samples. J. Inherit. Metab. Dis. 25, 98106.
  • 12
    Maruyama, K. & Kitamura, H. (1985) Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroides S. J. Biochem. (Tokyo). 98, 819824.
  • 13
    Brass, E.P. (1992) Interaction of carnitine and propionate with pyruvate oxidation by hepatocytes from clofibrate-treated rats: importance of coenzyme A availability. J. Nutr. 122, 234240.
  • 14
    Käfer, E. (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19, 33131.
  • 15
    Bergmeyer, J. & Graßl, M. (1983) Glucose Oxidase. In Samples, Reagents, Assessment of Results (Bergmeyer, J. & Graßl, M., eds), pp. 201202. Verlag Chemie, Weinheim.
  • 16
    Ziegenhorn, J., Senn, M. & Bücher, T. (1976) Molar absorptivities of beta-NADH and beta-NADPH. Clin. Chem. 22, 151160.
  • 17
    Buckel, W. & Eggerer, H. (1965) Zur optischen Bestimmung von Citrat-Synthase und Acetyl-Coenzym A. Biochem. Zeitschr. 343, 2943.
  • 18
    Buckel, W., Ziegert, K. & Eggerer, H. (1973) Acetyl-CoA-dependent cleavage of citrate on inactivated citrate lyase. Eur. J. Biochem. 37, 295304.
  • 19
    Riddles, P.W., Blakeley, R.L. & Zerner, B. (1979) Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid) – a re-examination. Anal. Biochem. 94, 7581.
  • 20
    Takeda, Y., Suzuki, F. & Inoue, H. (1969) ATP: citrate lyase. In Methods in Enzymology (Lowenstein, J.M., ed.), pp. 153163. Academic Press Inc, London.
  • 21
    Srere, P.A. (1966) Citrate-condensing enzyme-oxaloacetate binary complex. studies on its physical and chemical properties. J. Biol. Chem. 241, 21572160.
  • 22
    McFadden, B.A. (1969) Isocitrate lyase. In Methods in Enzymology (Lowenstein, J.M., ed.), pp. 163170. Academic Press Inc, London.
  • 23
    Millar, A.H., Leaver, C.J. & Hill, S.A. (1999) Characterization of the dihydrolipoamide acetyltransferase of the mitochondrial pyruvate dehydrogenase complex from potato and comparisons with similar enzymes in diverse plant species. Eur. J. Biochem. 264, 973981.
  • 24
    Reed, L.J. & Mukherjee, B.B. (1969) Alpha-ketoglutarate dehydrogenase complex from Escherichia coli. In Methods Enzymol. (Lowenstein, J.M., ed.), pp. 5561. Academic Press Inc., London.
  • 25
    Buckel, W. & Eggerer, H. (1969) Intramolecular nucleophilic catalysis on the hydrolysis of citryl-CoA. Hoppe Seylers Z. Physiol. Chem. 350, 13671376.
  • 26
    Wennekes, L.M., Goosen, T., van den Broek, P.J. & van den Broek, H.W. (1993) Purification and characterization of glucose-6-phosphate dehydrogenase from Aspergillus niger and Aspergillus nidulans. J. Gen. Microbiol. 139, 27932800.
  • 27
    Stemple, C.J., Davis, M.A. & Hynes, M.J. (1998) The facC gene of Aspergillus nidulans encodes an acetate-inducible carnitine acetyltransferase. J. Bacteriol. 180, 62426251.
  • 28
    Dijkema, C. & Visser, J. (1987) 13C-NMR analysis of Aspergillus mutants disturbed in pyruvate metabolism. Biochim. Biophys. Acta. 931, 311319.
  • 29
    Bos, C.J., Slakhorst, M., Visser, J. & Roberts, C.F. (1981) A third unlinked gene controlling the pyruvate dehydrogenase complex in Aspergillus nidulans. J. Bacteriol. 148, 594599.
  • 30
    Strauss, J., Horvath, H.K., Abdallah, B.M., Kindermann, J., Mach, R.L. & Kubicek, C.P. (1999) The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol. Microbiol. 32, 169178.
  • 31
    Slayman, C.W. & Tatum, E.L. (1964) Potassium transport in Neurospora. I. Intracellular sodium and potassium concentrations, and cation requirements for growth. Biochim. Biophys. Acta. 88, 578592.
  • 32
    Ruijter, G.J.G. & Visser, J. (1996) Determination of intermediary metabolites in Aspergillus niger. J. Microbiol. Methods 25, 295302.
  • 33
    Midgley, M. (1993) Carnitine acetyltransferase is absent from acuJ mutants of Aspergillus nidulans. FEMS Microbiol. Lett. 108, 710.
  • 34
    Perez, P., Martinez, O., Romero, B., Olivas, I., Pedregosa, A.M., Palmieri, F., Laborda, F. & Ramon De Lucas, J. (2003) Functional analysis of mutations in the human carnitine/acylcarnitine translocase in Aspergillus nidulans. Fungal Genet. Biol. 39, 211220.
  • 35
    van den Berg, M.A., de Jong-Gubbels, P., Kortland, C.J., van Dijken, J.P., Pronk, J.T. & Steensma, H.Y. (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271, 2895328959.
  • 36
    Horswill, A.R. & Escalante-Semerena, J.C. (1999) The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology 145, 13811388.
  • 37
    van den Broek, P., Goosen, T., Wennekes, B. & van den Broek, H. (1995) Isolation and characterization of the glucose-6-phosphate dehydrogenase encoding gene (gsdA) from Aspergillus niger. Mol. Gen. Genet. 247, 229239.
  • 38
    Loiudice, F.H., Silva, D.P., Zanchin, N.I., Oliveira, C.C. & Pessoa, A. Jr (2001) Overexpression of glucose-6-phosphate dehydrogenase in genetically modified Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 91–93, 161169.
  • 39
    Watanabe, A., Fujii, I., Sankawa, U., Mayorga, M.E., Timberlake, W.E. & Ebizuka, Y. (1999) Re-identification of Aspergillus nidulans wA-gene for a polyketide synthase of naphthopyrone. Tetrahedron Lett. 40, 9194.
  • 40
    Zhang, Y.Q. & Keller, N.P. (2004) Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans. Mol. Microbiol. 52, 541550.
  • 41
    Tsang, A.W., Horswill, A.R. & Escalante-Semerena, J.C. (1998) Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J. Bacteriol. 180, 65116518.
  • 42
    Adams, I.P., Dack, S., Dickinson, F.M. & Ratledge, C. (2002) The distinctiveness of ATP: citrate lyase from Aspergillus nidulans. Biochim. Biophys. Acta. 1597, 3641.
  • 43
    Feliz, B., Witt, D.R. & Harris, B.T. (2003) Propionic acidemia. A neuropathology case report and review of prior cases. Arch. Pathol. Lab. Med. 127, e325e328.
  • 44
    Peters, H., Nefedov, M., Sarsero, J., Pitt, J., Fowler, K.J., Gazeas, S., Kahler, S.G. & Ioannou, P.A. (2003) A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality. J. Biol. Chem. 278, 5290952913.
  • 45
    Sahm, H., Eggeling, L. & de Graaf, A.A. (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol. Chem. 381, 899910.
  • 46
    Katz, M.E. & Hynes, M.J. (1989) Isolation and analysis of the acetate regulatory gene, facB, from Aspergillus nidulans. Mol. Cell. Biol. 9, 56965701.
  • 47
    Suelmann, R., Sievers, N., Galetzka, D., Robertson, L., Timberlake, W.E. & Fischer, R. (1998) Increased nuclear traffic chaos in hyphae of Aspergillus nidulans: molecular characterization of apsB and in vivo observation of nuclear behaviour. Mol. Microbiol. 30, 831842.