Phylogenetic and transcriptional analysis of a strictosidine synthase-like gene family in Arabidopsis thaliana reveals involvement in plant defence responses


  • Editor
    C. Pieterse

O. Schmidt, Plant and Food Sciences, School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, Glen Osmond, SA, 5064, Australia.


Protein domains with similarity to plant strictosidine synthase-like (SSL) sequences have been uncovered in the genomes of all multicellular organisms sequenced so far and are known to play a role in animal immune responses. Among several distinct groups of Arabidopsis thaliana SSL sequences, four genes (AtSSL4–AtSSL7) arranged in tandem on chromosome 3 show more similarity to SSL genes from Drosophila melanogaster and Caenorhabditis elegans than to other Arabidopsis SSL genes. To examine whether any of the four AtSSL genes are immune-inducible, we analysed the expression of each of the four AtSSL genes after exposure to microbial pathogens, wounding and plant defence elicitors using real-time quantitative RT-PCR, Northern blot hybridisation and Western blot analysis with antibodies raised against recombinant AtSSL proteins. While the AtSSL4 gene was constitutively expressed and not significantly induced by any treatment, the other three AtSSL genes were induced to various degrees by plant defence signalling compounds, such as salicylic acid, methyl jasmonate and ethylene, as well as by wounding and exposure to the plant pathogens Alternaria brassicicola and cucumber mosaic virus. Our data demonstrate that the four SSL-coding genes are regulated individually, suggesting specific roles in basal (SSL4) and inducible (SSL5-7) plant defence mechanisms.