Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil

Authors


  • Editor
    R. Mendel

L. A. Ivanova, Botanical Garden of Ural Division, Russian Academy of Sciences, 8 Marta 202a, 620144 Yekaterinburg, Russia.
E-mail: Larisa.Ivanova@botgard.uran.ru

Abstract

Recent studies of transgenic poplars over-expressing the genes gsh1 and gsh2 encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild-type poplar and transgenic plants over-expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal-contaminated soil in the field. Over-expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6-fold leaf area per leaf compared to wild-type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over-expression of γ-ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3-fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild-type plants but not in transformants. Biomass accumulation of wild-type poplars decreased in contaminated soil by more than 30-fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over-expressing γ-ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild-type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.

Ancillary