Get access

Herkogamy and mate diversity in the wild daffodil Narcissus longispathus: beyond the selfing–outcrossing paradigm in the evolution of mixed mating


  • Editor
    A. Dafni

M. Medrano, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n, Isla de La Cartuja, 41092 Sevilla.


Spatial separation of male and female reproductive structures (herkogamy) is a widespread floral trait that has traditionally been viewed as an adaptation that reduces the likelihood of self-pollination. Here we propose that increased herkogamy may also influence another important aspect of plant mating: the diversity of pollen donors siring seeds within fruits. We test this hypothesis in Narcissus longispathus, a wild daffodil species with extensive variation in anther–stigma separation. To study the morphological basis of variation in herkogamy, floral measurements were undertaken in 16 populations of N. longispathus. We then quantified multilocus outcrossing rates and the correlation of outcrossed paternity in three of these populations sampled over several years. Mating system estimates were calculated for each population and year, and also separately for groups of plants that differed markedly in herkogamy within each population and year. In N.  longispathus herkogamy was much more variable than other floral traits, and was more closely related to style length than to anther position. Averaged across populations and years, plants with high herkogamy had similar outcrossing rates (0.683) to plants with intermediate (0.648) or low herkogamy (0.590). However, a significant linear trend was found for correlation of outcrossed paternity, which increased monotonically from high herkogamy (0.221), through intermediate herkogamy (0.303) to low herkogamy (0.463) plants. The diversity of pollen donors siring seeds of high herkogamy Narcissus flowers was thus consistently greater than the diversity of pollen donors siring seeds of low herkogamy flowers. Results of this study contribute to the emerging consensus that floral traits can simultaneously influence several aspects of plant mating system in complex ways, thus extending the traditional focus centred exclusively on patterns and relative importance of self- and cross-fertilisation.