Arabidopsis thaliana transgenics overexpressing IBR3 show enhanced susceptibility to the bacterium Pseudomonas syringae



L. Zimmerli, Institute of Plant Biology, The National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.



The gene, indole-3-butyric acid (IBA)-RESPONSE (IBR) 3, is thought to participate in peroxisomal β-oxidation of IBA to indole-3-acetic acid. Here we show that IBR3 may also play a role in Arabidopsis thaliana defence response to microbial pathogens. IBR3 is up-regulated during infection by virulent Pseudomonas syringae pv. tomato (Pst) DC3000 bacteria. Although mutant ibr3-4 did not show a pathogen phenotype, lines overexpressing IBR3 demonstrated enhanced susceptibility to Pst DC3000. Increased susceptibility phenotypes of IBR3 overexpressors were correlated with defective SA defence signalling and impairment of pattern-triggered immunity (PTI) activation. Notably, reactive oxygen species production was reduced in IBR3 overexpressors after treatment with the microbe-associated molecular patterns flg22 and efl26. Later PTI responses, such as accumulation of FRK1 transcripts and callose deposition were also reduced in transgenics overexpressing IBR3 after inoculation with the Type III secretion system deficient bacterial mutant Pst DC3000 hrcC or treatment with flg22 or elf26. Importantly, overexpression of IBR3 did not affect indole-3-acetic acid content or auxin-responsive gene expression. These results suggest a novel role for IBR3 in A. thaliana defence response against bacterial pathogens.