A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco



M. Baucher, Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium.

E-mail: mbaucher@ulb.ac.be


The MIR396 family, composed of ath-miR396a and ath-miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth-Regulating Factor (GRF) gene family. ath-miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath-miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc-miR396c, with a mature sequence identical to ath-miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down-regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down-regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE-PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.