SEARCH

SEARCH BY CITATION

Keywords:

  • Female reproductive success;
  • functional gender;
  • mating environment;
  • phenology of sex expression;
  • standardised phenotypic gender

Abstract

Some gynodioecious species have intermediate individuals that bear both female and hermaphroditic flowers. This phenomenon is known as a gynodioecious–gynomonoecious sexual system. Gender expression in such species has received little attention in the past, and the phenologies of male and female functions have also yet to be explored. In this study, we examined variations in gender patterns, their effects on female reproductive success and sex expression in depth throughout the flowering period in two populations. The studied populations of Silene littorea contained mostly gynomonoecious plants and the number of pure females was very low. The gynomonoecious plants showed high variability in the total proportion of female flowers. In addition, the proportion of female flowers in each plant varied widely across the flowering season. Although there was a trend towards maleness, our measures of functional gender suggested that most plants transmit their genes via both pollen and ovules. Fruit set and seed set were not significantly different among populations; in contrast, flower production significantly varied between the two populations – and among plants – with consequent variation in total seed production. Conversely, gender and sex expression were similar in both populations. Plants with higher phenotypic femaleness did not have higher fruit set, seed set or total female fecundity. The mating environment fluctuated little across the flowering period, but fluctuations were higher in the population with low flower production. We therefore conclude that the high proportion of gynomonoecious individuals in our studied populations of S. littorea may be advantageous for the species, providing the benefits of both hermaphroditic and female flowers.