Flower Choice and Learning in Foraging Bumblebees: Effects of Variation in Nectar Volume and Concentration

Authors


James D. Thomson, Department of Zoology, University of Toronto, 25 Harbord St., Toronto, ON, Canada M5S 3G5.
E-mail: jthomson@zoo.utoronto.ca

Abstract

Bees collect food from flowers that differ in morphology, color, and scent. Nectar-seeking foragers can rapidly associate a flower's cues with its profitability, measured as caloric value or ‘net energy gain,’ and generally develop preferences for more profitable species. If two flower types are equally easy to discover and feed from, differences in profitability will arise from differences in the volume or the sugar concentration of their nectar crops. Although there has been much study of how bees respond to one or the other of these two kinds of nectar variation, few studies have considered both at once. We presented free-foraging bumblebees with two different types of equally rewarding artificial flowers. After a period of familiarization, we made one type more rewarding than the other by increasing its nectar concentration, volume, or both. Bees responded more rapidly to a change in the reward's sugar concentration than to a change in its volume, even if the profitability differences were approximately equal. Sucrose concentration differences (40% vs. 13%) caused bees to virtually abandon the more dilute flower type, whether both types offered the same volume (2 μl) or the less concentrated reward offered higher volume (7 μl vs. 0.85 μl). When the two types of flower differed only in nectar volume (7 μl vs. 0.85 μl), the less rewarding type continued to receive 22% of the visits. We propose three different hypotheses to explain the stronger response of the bees to changes in sugar concentration: (i) their response threshold to sucrose concentration might change; (ii) less time is needed to assess the concentration of a reward than its volume; and (iii) a smaller sample size may be needed for reliable estimation of profitability when flowers differ in concentration.

Ancillary