SEARCH

SEARCH BY CITATION

Abstract

Flowers exhibit symmetrical patterns, and innate preferences for symmetry in pollinators like honeybees are documented. Most previous studies of symmetry preferences in honeybees, Apis mellifera, tested levels of asymmetry using artificial flowers or stimuli. Here we investigated the effect of flower asymmetry on flower preferences of honeybees in a novel approach using real flowers, incorporating their spectral properties and how the receivers process the visual signals. Importantly, we also tested the response of an ‘eavesdropping’ predator, the crab spider Thomisus spectabilis, that also utilizes the same flower to prey on honeybees. Flowers (Chrysanthemum frutescens) were manipulated to contain asymmetrical and symmetrical patterns, excluding olfactory cues. Both crab spiders and honeybees exhibited a significant preference for symmetrical flowers. Moreover, honeybees exhibited a significant preference for radial symmetry over bilateral symmetry, but no corresponding effect was recorded in crab spiders. Further analyses demonstrated that flower reflectance and orientation of the axis of symmetry did not affect crab spider decisions. Field observations on T. spectabilis revealed that the natural variation in C. frutescens symmetry had no effect on the choice of crab spiders. This indicates that spiders and honeybees may use other flower characteristics, for example, olfactory cues, together with flower symmetry, to make their foraging decisions.