Olfactory Predator Discrimination in Yellow-Bellied Marmots


Daniel T. Blumstein, Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA. E-mail: marmots@ucla.edu


The mechanism underlying olfactory predator identification may be relatively experience-independent, or it may rely on specific experience with predators. A mechanism by which prey might identify novel predators relies on the inevitable creation of sulfurous metabolites that are then excreted in the urine of carnivorous mammals. We tested whether free-living, yellow-bellied marmots (Marmota flaviventris) and mid-sized herbivores that fall prey to a variety of carnivorous mammals could discriminate herbivore (elk—Cervus elephas) urine from predator (red fox—Vulpes vulpes, coyote—Canis latrans, mountain lion—Felis concolor, wolf—Canis lupus) urine, a novel herbivore (moose—Alces alces), and a distilled water control. We further asked how specific this assessment was by testing whether marmots responded differently to predators representing different levels of risk and to familiar vs. unfamiliar predators. We found that marmots responded more to urine from coyotes (a familiar predator on adults), mountain lions (a potentially unfamiliar predator that could kill adults) and wolves (a locally extinct predator that could kill adults) than to elk urine (a non-predator). Red fox (a predator that poses a risk only to recently emerged marmot pups) urine elicited a less substantial (but not significantly so) response than coyote urine. Marmots can identify predators, even novel ones, using olfactory cues, suggesting that experience with a specific predator is not required to identify potential threats.