SEARCH

SEARCH BY CITATION

Abstract

Many chemically defended prey advertize toxicity to predators by aposematic coloration. When aposematic prey are approached, they often move slowly or not at all, allowing predators to evaluate their unprofitability. Poison frogs (Dendrobatidae) are toxic, aposematically colored, forage openly and diurnally, and are much easier to capture than many palatable frogs. Although protected against diverse predators, they are sometimes attacked and are subjected to injury by large animals without predatory intent. We predicted that they have limited escape behavior, but retain ability to assess and respond to risk. When we approached Dendrobates auratus and Oophaga pumilio on forest trails, both species hopped by the shortest route to the nearer forest edge and stopped there. When approached, D. auratus moved after shorter latency at an angle closer to perpendicular to the forest edge, were more likely to leave the trail, and left the trail sooner with fewer changes in direction after moving a shorter distance than when not approached. In agreement with predictions of optimal escape theory based on risk, flight initiation distance by D. auratus was greater when approached directly than indirectly and rapidly than slowly, and was greater when frogs were in the open than partially concealed. Frogs neither attempted rapid escape nor entered refuges. Both species hopped leisurely and remained visible after stopping. They exhibit the diminished escape behavior of aposematic prey, yet retain the capacity to assess risk and adjust behavior accordingly. Their behavior demonstrates continued need for escape behavior by highly toxic aposematic prey.