SEARCH

SEARCH BY CITATION

Abstract

Lateralization is the function specialization between left and right brain hemispheres. It is now ascertained in ectotherms too, where bias in eye use for different tasks, i.e., visual lateralization, is widespread. The lateral eye position on the head of ectotherm animals, in fact, allows them to observe left/right stimuli independently and allows lateralized individuals to carry out left and right perceived tasks at the same time. A recent study conducted on common wall lizards, Podarcis muralis, showed that lizards predominantly monitor a predator with the left eye while escaping. However, this work was conducted in a controlled laboratory setting owing to the difficulty of carrying out lateralization experiments under natural conditions. Nevertheless, field studies could provide important information to support what was previously found in the laboratory and demonstrate that these traits occur in nature. In this study, we conducted a field study on the antipredatory behavior of P. muralis lizards. We simulated predatory attacks on lizards in their natural environment. We found no lateralization in the measure of eye used by the lizard to monitor the predator before escaping from it, but the eye used was probably determined by the relative position of the lizard and the predator just before the attack. This first eye used did not affect escape decisions; lizards chose to escape toward the nearest refuge irrespective of whether it was located to the lizard’s left or right side. However, once they had escaped to a refuge, lizards had a left eye–mediated bias to monitor the predator when first emerging from the refuge, and this bias was likely independent of other environmental variables. Hence, these field findings support a left eye–mediated observation of the predator in P. muralis lizards, which confirms previous findings in this and other species.