SEARCH

SEARCH BY CITATION

Keywords:

  • Animal model;
  • body weight;
  • genetic correlation;
  • heritability;
  • pregnancy length;
  • survival rate

Summary

The aims of this study are to estimate variance components of litter size and kit survival rate and estimate genetic correlations of litter size and kit survival rate with dam’s juvenile body weight and pregnancy length. Variance components for litter size and kit survival were analysed using an AI-REML approach, based on data from 1940 litters of the black colour type mink from 1996 to 2001. The models included (i) additive genetic effect of dam; (ii) dam and sire genetic effects; (iii) additive genetic effect of dam in relation to litter size and dam and sire genetic effects in relation to survival rate; (iv) additive genetic effect of dam to estimate the correlations of litter size or kit survival with dam juvenile body weight and pregnancy length on yearling dams (1357 litters). The dam heritabilities were of litter size (0.02–0.08) and survival rate (0.05–0.10). The permanent effects of dam were important for litter size (0.15–0.19) but not for survival rate. A positive dam genetic correlation between litter size and survival rate was found at 1 week postpartum (0.42), and a positive sire genetic correlation between number of weaned kits and survival rate at the age of 6 month (0.72). Litter size and survival rate were genetically antagonistically related to dam’s juvenile body weight (−0.34 to −0.53). These results indicate the following: (i) it is possible to improve litter size and kit survival by selection, (ii) effective improvement of kit survival rate in the suckling period requires selection for maternal effect on kit survival and kit’s own capacity to survive and later in the growth period for kit’s own ability to survive and (iii) antagonistic genetic correlation of dam juvenile body weight with litter size and survival rate should be taken into consideration in mink breeding programs.