Fasting and refeeding modulate the expression of stress proteins along the gastrointestinal tract of weaned pigs

Authors


J. P. Lallès, INRA SENAH, Domaine de la Prise, F-35590 Saint-Gilles, France. Tel: +33 223 485359; Fax: +33 223 485080; E-mail: Jean-Paul.Lalles@rennes.inra.fr

Summary

The gastrointestinal tract (GIT) of young mammals is submitted to aggressions early in life and GIT stress proteins are up-regulated in pigs following weaning. We hypothesized that transient food deprivation may contribute to these changes. Therefore, the effects of fasting and refeeding on GIT stress proteins in weaned pigs were investigated. A complete block experimental design with three groups of five pigs each was set up with the following treatments: A – food offered, B – fasted for 1.5 days, C – fasted for 1.5 days and then re-fed for 2.5 days. After slaughter, the GIT was removed, weighed and sampled. Intestinal villi and crypts were measured and alkaline phosphatase activity was determined. GIT tissue stress protein concentrations were measured by Western blotting. Fasting led to intestinal mucosa and villous-crypt atrophy (p < 0.01) and reduced mucosal alkaline phosphatase total activity in the proximal small intestine (p < 0.05). Heat shock proteins HSP 27 and HSP 90 (but not HSP 70) and neuronal NO synthase (nNOS) increased (p < 0.01) in the stomach, mid-intestine and proximal colon with fasting. Inducible NOS (iNOS) did so in the stomach (p < 0.001). Refeeding partially or totally restored GIT characteristics and stress protein concentrations, except for gastric HSP 90 and iNOS. Significant correlations (p < 0.05 to p < 0.0001) were found among stress proteins, between nNOS and digesta weight, between HSP 27 or HSP 90 and intestinal mucosa weight, and between intestinal or colonic HSP or nNOS and alkaline phosphatase. In conclusion, fasting and refeeding modulate GIT HSP proteins and nNOS in pigs following weaning. Changes in digesta and intestinal mucosa weights and alkaline phosphatase activity may be involved in the modulation of stress proteins along the GIT.

Ancillary