• corn crop;
  • ensilage;
  • inoculant;
  • dairy cow;
  • mid-lactation;
  • feed intake;
  • volatile fatty acids


In many regions, optimum dry matter (DM) content of corn crop pre-ensilage cannot be ensured for management, agronomical and climatic reasons. Under such conditions, corn crops are harvested at low DM, and are easily exposed to unfavourable fermentation pathways and plant spoilage and wastage. Thus, it is a major question for dairy agriculturists whether certain microbial inoculants application to low-DM corn crop pre-ensilage affects silage quality and cow performance. The objective was to determine effects of adding microbial inoculants to low-DM corn crop at ensiling on silage quality, rumen fermentation and milk production of eight Holstein cows fed the treated silages. Whole corn plant was harvested at milk stage of maturity with 204 g DM/kg of fresh crop, cut to a theoretical particle length of 2 cm, filled in 60 t bunker silos, and treated layer by layer with either no inoculant (control), inoculant ‘E’ (100 000 cfu/g of fresh crop) containing mainly Lactobacillus plantarum, inoculant ‘B’ (100 000 cfu) containing mainly Pediococcus pentosanus, Lactobacillus plantarum and Propionibacter freudenreichii or a mixture of inoculants ‘E’ and ‘B’ (200 000 cfu). Inoculants were mixed with water and sprayed on thin layers of corn chops layer by layer followed by rolling to ensure proper oxygen outage and even microbial distribution throughout the plants. Eight multiparous lactating Holstein cows at 100 ± 20.5 days in milk were used in a replicated 4 × 4 Latin square design with four 20-day periods including 14 days of adaptation and 6 days of sampling. Dietary treatments were mixed rations containing corn silages with or without the inoculants. The basal diet contained 32.9% corn silage, 14.3% alfalfa hay and 52.8% concentrate on a DM basis. Inoculants did not affect silage pH or content of DM, CP, lactate, acetate, ash and total volatile fatty acids (VFA). Applying ‘B’ to corn crop resulted in higher water soluble carbohydrates (47.7 g/kg vs 29.8 g/kg) and lower neutral detergent fibre (494.1 g/kg vs 464.0 g/kg) compared with control. The combined inoculants increased silage butyrate relative to other treatments. The mixture of ‘E + B’ and ‘B’ moderately decreased rumen pH, when compared to ‘E’. The ‘E + B’ increased rumen VFA concentrations relative to ‘E’ and control silage. Dry matter intake increased when corn crop was ensiled with ‘E’ than with control and ‘E + B’, but this had little impact on milk production or its energy concentrations. Milk energy yield tended to decrease when ‘B’ but not ‘E’ was applied alone, compared with control and ‘E + B’. The estimated proportion of the consumed energy secreted in milk increased when inoculants were applied together compared with when they were used separately. Results suggest positive effects of Lactobacillus plantarum containing inoculant on feed intake, some effects on corn silage water soluble carbohydrates, fibre and butyrate contents, rumen pH and VFA concentrations; but no significant effects on total tract nutrient digestibility or productivity of Holstein cows fed diets with 329 g corn silage/kg of diet DM.