SEARCH

SEARCH BY CITATION

References

  • Acosta-Martínez V., Cruz L., Sotomayor-Ramírez D., Pérez-Alegria L. (2007) Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment, 35, 3645.
  • Adani F., Ricca G., Tambone F., Genevini P. (2006) Isolation of the stable fraction (the core) of the humic acid. Chemosphere, 65, 13001307.
  • Benner R., Fogel M., Sprague E. (1991) Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnology and Oceanography, 36, 13581374.
  • Brüchert V., Pratt L. (1996) Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochimica et Cosmochimica Acta, 60, 23252332.
  • Caçador I., Vale C., Catarino F. (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Marine Environmental Research, 49, 279290.
  • Caçador I., Caetano M., Duarte B., Vale C. (2009) Stock and losses of trace metals from salt marsh plants. Marine Environmental Research, 67, 7582.
  • Doyle M., Otte M. (1997) Organism-induced accumulation of Fe, Zn and AS in wetland soils. Environmental Pollution (Barking, Essex: 1987), 96, 111.
  • Duarte B., Delgado M., Caçador I. (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere, 69, 836840.
  • Duarte B., Reboreda R., Caçador I. (2008) Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere, 73, 10561063.
  • Folin O., Ciocalteau V. (1927) On tyrosine and tryptophane determination in proteins. Journal of Biological Chemistry, 73, 424427.
  • Gadd G. (2001) Accumulation and transformation of metals by microorganisms. In: RehmH.-J., ReedG., PuhlerA., StadlerP. (Eds), Biotechnology, a Multi-volume Comprehensive Treatise, Volume 10: Special Processes. Wiley-VCH Verlag, Weinheim, Germany: 225264.
  • Gadd G. (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109119.
  • Hullebusch E., Utomo S., Zandvoort M., Lens P. (2005) Comparison of three sequential extraction procedures to describe metal fractioning in anaerobic granular sludges. Talanta, 65, 549558.
  • Isermeyer H. (1952) Eine einfache Method zur Bestimmung der Bodenatmug und der Kerbonate im Boden. In: AlefK., NannipieriP. (Eds), Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London: 2638.
  • Johnsen A., Jacobsen O. (2008) A quick and sensitive method for the quantification of peroxidase activity of organic surface soil from forests. Soil Biology and Biochemistry, 40, 814821.
  • Kang H., Freeman C., Park S., Chun J. (2005) N-Acetylglucosaminidase activities in wetlands: a global survey. Hydrobiologia, 532, 103110.
  • Ladd J.N., Brisbane P.G., Butler J.H.A. (1976) Studies on soil fumigation. 3. Effects on enzyme-activities, bacterial numbers and extractable ninhydrin reactive compounds. Soil Biology and Biochemistry, 8, 255260.
  • Ludemann H., Arth I., Wiesack W. (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Applied and Environmental Microbiology, 66, 754762.
  • Mucha A., Almeida C., Bordalo A., Vasconcelos M. (2005) Exudation of organic acids by a marsh plant and implications on trace metal availability in the rizosphere of estuarine sediments. Estuarine, Coastal and Shelf Science, 65, 191198.
  • Oyekola O., Pletschke B. (2006) ATP-sulphurylase: an enzymatic marker for sulphate reduction? Soil Biology and Biochemistry, 38, 35113515.
  • Passier H., Böttcher M., De Lange G. (1999) Sulphur enrichment in organic matter of eastern Mediterranean sapropels: a study of sulphur isotope partitioning. Aquatic Geochemistry, 5, 99118.
  • Pereira P., Caçador I., Vale C., Caetano M., Costa A. (2007) Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal). Science of the Total Environment, 380, 93101.
  • Ravit B., Ehrenfeld J.G., Haggblom M.M. (2003) A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries, 26(2B), 465474.
  • Reboreda R., Caçador I. (2007) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere, 69, 16551661.
  • Reboreda R., Caçador I. (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Marine Environmental Research, 65, 7784.
  • Richert M., Saarnio S., Juutinen S., Silvola J., Augustin J., Merbach W. (2000) Distribution of assimilated carbon in the system Phragmites australis-waterlogged peat soil after carbon-14 pulse labeling. Biology and Fertility of Soils, 32, 17.
  • Tabak H., Lens P., Hullebush E., Dejonghe W. (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. – 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Reviews in Environmental Science and BioTechnology, 4, 115156.
  • Tessier A. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844851.
  • Tobias C.R., Macko S.A., Anderson I.C., Canuel E.A. (2001) Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: a combined groundwater tracer and in situ isotope enrichment study. Limnology and Oceanography, 46, 19771989.
  • Valiela I., Teal J., Allen S., Van Etten R., Goehringer D., Volkmann S. (1985) Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology, 89, 2954.
  • Valiela I., Cole M., McClelland J., Cebrian J., Joye S.B. (2000). Role of salt marshes as part of coastal landscapes. In: WeinsteinM.P., KreegerD.A. (Eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, London: 3957.
  • Waterman P., Molle S. (1994) Analysis of Phenolic Plant Metabolites. Blackwell, Oxford.
  • Weis J., Weis P. (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685700.
  • Wilczek S., Fischer H., Pusch M. (2005) Regulation and seasonal dynamics of extracellular enzymatic activities in sediments of a large lowland river. Microbial Ecology, 50, 253267.
  • Wilson J., Buchsbaum R., Valiela I., Swain T. (1986) Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Marine Ecology Progress Series, 29, 177187.
  • Yang R., Tang J., Chen X., Hu S. (2007) Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Applied Soil Ecology, 37, 240246.
  • Zawislanski P., Chau S., Mountford H., Wong H., Sears T. (2001) Accumulation of selenium and trace metals on plant litter in a tidal marsh. Estuarine, Coastal and Shelf Science, 52, 589603.