SEARCH

SEARCH BY CITATION

Keywords:

  • Candida dubliniensis;
  • cell surface hydrophobicity;
  • chlorhexidine gluconate

Summary

Candidal adhesion has been implicated as the initial step in the pathogenesis of oral candidiasis and cell surface hydrophobicity (CSH) has been implicated in adhesion to mucosal surfaces. Candida dubliniensis is an opportunistic pathogen associated with recurrent oral candidiasis. Chlorhexidine gluconate is by far the commonest antiseptic mouth wash prescribed in dentistry. At dosage intervals the intraoral concentration of this antiseptic fluctuates considerably and reaches sub-therapeutic levels due to the dynamics of the oral cavity. Hence, the organisms undergo only a limited exposure to the antiseptic during treatment. The impact of this antiseptic following such exposure on CSH of C. dubliniensis isolates has not been investigated. Hence, the main objective of this study was to investigate the effect of brief exposure to sub-therapeutic concentrations of chlorhexidine gluconate on the CSH of C. dubliniensis isolates. Twelve oral isolates of C. dubliniensis were briefly exposed to three sub-therapeutic concentrations of 0.005%, 0.0025% and 0.00125% chlorhexidine gluconate for 30 min. Following subsequent removal of the drug, the CSH of the isolates was determined by a biphasic aqueous-hydrocarbon assay. Compared with the controls, exposure to 0.005% and 0.0025% chlorhexidine gluconate suppressed the relative CSH of the total sample tested by 44.49% (< 0.001) and 21.82% (< 0.018), respectively, with all isolates being significantly affected. Although exposure to 0.00125% of chlorhexidine gluconate did not elicit a significant suppression on the total sample tested (7.01%; > 0.05), four isolates of the group were significantly affected. These findings imply that exposure to sub-therapeutic concentrations of chlorhexidine gluconate may suppress CSH of C. dublinienis isolates, thereby reducing its pathogenicity and highlights further the pharmacodynamics of chlorhexidine gluconate.