Acrosin Activity Regulation by Protein Kinase C and Tyrosine Kinase in Bovine Sperm Acrosome Exocytosis Induced by Lysophosphatidylcholine

Authors

  • MS Pérez Aguirreburualde,

    1. Cátedra de Química Biológica, Instituto de Investigación y Tecnología en Reproducción animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín, Buenos Aires, Argentina
    Search for more papers by this author
  • S Fernández,

    1. Cátedra de Química Biológica, Instituto de Investigación y Tecnología en Reproducción animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín, Buenos Aires, Argentina
    Search for more papers by this author
  • M Córdoba

    1. Cátedra de Química Biológica, Instituto de Investigación y Tecnología en Reproducción animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín, Buenos Aires, Argentina
    Search for more papers by this author

Author’s address (for correspondence): M Córdoba, INITRA- Química Biológica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín 280, Ciudad Autónoma de Buenos Aires 1427, Argentina. E-mail: mcordoba@fvet.uba.ar

Contents

Acrosin is an important proteolytic enzyme that is capable of hydrolysing the zona pellucida in bovine oocyte. Lysophosphatydic acid (LPA) derivated from lysophosphatidylcholine (LPC) is known to trigger the acrosome exocytosis. The present study was aimed at examining the acrosin activity variations in LPC-induced acrosome exocytosis and its regulation by tyrosine kinase, protein kinase C (PKC) and voltage-dependent calcium channels (VDCC) in spermatozoa previously capacitated with heparin or quercetin. The enzyme activities were spectrophotometrically measured using N-α-benzoyl-DL-arginine p-nitroanilide as an acrosin-specific substrate. The capacitation and acrosomal reaction were evaluated by chlorotetracycline assay, and the viability and acrosome integrity were evaluated by the trypan blue stain/differential interference contrast. It was observed that LPC induced acrosome exocytosis and increased the activity of acrosin in spermatozoa previously capacitated with heparin. In heparin/LPC-treated samples, it was observed that the inhibition of tyrosine kinase and PKC blocked the acrosome exocytosis and the acrosin activity (p < 0.05). Under these conditions, in heparin-capacitated spermatozoa, the LPC provokes an acrosin activity increase that is independent of calcium influx through VDCC Type L. In cryopreserved bovine spermatozoa, LPC might require modulation, mainly tyrosine kinase participation with respect to PKC activity to induce acrosome exocytosis and increase acrosin activity.

Ancillary