Induced Pluripotent Stem Cells from Pigs and Other Ungulate Species: An Alternative to Embryonic Stem Cells?


Author’s address (for correspondence):
RM Roberts, 240b Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310, USA. E-mail:


Robust embryonic stem cell (ESC) lines from livestock species have been difficult to derive and maintain, and unlike mouse ESC, have not contributed to our ability to understand directed differentiation in vitro. Nor have such cells yet provided a simpler means than pronuclear injection to manipulate the genomes of agriculturally important species, such as cattle, sheep and pigs. Induced pluripotent stem cells (iPSC) generated by reprogramming somatic cells, such as fibroblasts, with a set of stemness genes, most usually but not exclusively POU5F1, SOX2, KLF4 and c-MYC, offer an alternative to ESC in these regards, as they exhibit a pluripotent phenotype resembling that of ESC, yet are readily generated in the laboratory. Accordingly, such cells, in association with cloning technologies, may be useful for introducing complex genetic changes into livestock, although this potential has yet to be demonstrated. Porcine iPSC may be especially valuable because the pig is a prime biomedical model for tissue transplantation. In general, iPSC from livestock, like those from humans, are of the epiblast type and depend upon FGF2 and activin/nodal signalling systems to maintain their pluripotency and growth. Recent experiments, in which newly reprogrammed porcine and bovine cells were selected on a LIF-based medium in presence of specific protein kinase inhibitors, have allowed iPSC cells of the naïve type, resembling the more amenable blastocyst-derived mouse ESC and iPSC to be isolated. However, hurdles still remain if such cells are to achieve their biotechnological promise.