• 1
    Huxley AF, Straub RW. Local activation of interfibrillar structures in striated muscle. J. Physiol. 1958; 143: P401.
  • 2
    Huxley AF, Taylor RE. Local activation of striated muscle fibres. J. Physiol. 1958; 144: 42641.
  • 3
    Porter KR, Palade GE. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol. 1957; 3: 269300.
  • 4
    Franzini-Armstrong C. Fine structure of sarcoplasmic reticulum and tranverse tubular system in muscle fibers. Fed. Proc. 1964; 23: 88795.
  • 5
    Adrian RH, Costantin LL, Peachey LD. Radial spread of contraction in frog muscle fibres. J. Physiol. 1969; 204: 23157.
  • 6
    Eisenberg RS, Gage PW. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J. Gen. Physiol. 1969; 53: 27997.
  • 7
    Dulhunty AF, Gage PW. Electrical properties of toad skeletal muscle fibres in summer and winter. J. Physiol. 1973; 230: 61941.
  • 8
    Franzini-Armstrong C. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 1970; 47: 48898.
  • 9
    Gage PW, Eisenberg RS. Action potentials, afterpotentials, and excitation–contraction coupling in frog sartorius fibers without transverse tubules. J. Gen. Physiol. 1969; 53: 298310.
  • 10
    Franzini-Armstrong C. Studies of the triad. IV. Structure of the junction in frog slow fibers. J. Cell Biol. 1973; 56: 1208.
  • 11
    Eisenberg BR, Kuda AM, Peter JB. Stereological analysis of mammalian skeletal muscle. J. Cell Biol. 1974; 60: 73254.
  • 12
    Dulhunty AF, Franzini-Armstrong C. The passive electrical properties of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 1977; 266: 687711.
  • 13
    Dulhunty AF, Franzini-Armstrong C. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 1975; 250: 51339.
  • 14
    Dulhunty AF. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres. J. Physiol. 1978; 276: 6782.
  • 15
    Dulhunty AF. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J. Membr. Biol. 1979; 45: 293310.
  • 16
    Armstrong CM, Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature 1973; 242: 45961.
  • 17
    Armstrong CM, Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 1974; 63: 53352.
  • 18
    Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952; 117: 50044.
  • 19
    Schneider MF, Chandler WK. Voltage dependent charge movement of skeletal muscle: A possible step in excitation–contraction coupling. Nature 1973; 242: 2446.
  • 20
    Chandler WK, Rakowski RF, Schneider MF. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol. 1976; 254: 285316.
  • 21
    Dulhunty AF, Gage PW. Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J. Physiol. 1983; 341: 21331.
  • 22
    Eisenberg RS, McCarthy RT, Milton RL. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J. Physiol. 1983; 341: 495505.
  • 23
    Dulhunty AF, Gage PW. Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle. J. Physiol. 1988; 399: 6380.
  • 24
    Lamb GD. Asymmetric charge movement in polarized and depolarized muscle fibres of the rabbit. J. Physiol. 1987; 383: 34967.
  • 25
    Rios E, Brum G. Involvement of dihydropyridine receptors in excitation–contraction coupling in skeletal muscle. Nature 1987; 325: 71720.
  • 26
    Fabiato A, Fabiato F. Calcium release from the sarcoplasmic reticulum. Circ. Res. 1977; 40: 11929.
  • 27
    Vergara J, Tsien RY, Delay M. Inositol 1,4,5-trisphosphate: A possible chemical link in excitation–contraction coupling in muscle. Proc. Natl Acad. Sci. USA 1985; 82: 63526.
  • 28
    Hidalgo C, Jaimovich E. Inositol trisphosphate and excitation–contraction coupling in skeletal muscle. J. Bioenerg. Biomembr. 1989; 21: 26781.
  • 29
    Jaimovich E, Carrasco MA. IP3 dependent Ca2+ signals in muscle cells are involved in regulation of gene expression. Biol. Res. 2002; 35: 195202.
  • 30
    Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J. Biol. Chem. 1986; 261: 63006.
  • 31
    Smith JS, Coronado R, Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature 1985; 316: 4469.
  • 32
    Fleischer S, Ogunbunmi EM, Dixon MC, Fleer EA. Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc. Natl Acad. Sci. USA 1985; 82: 72569.
  • 33
    Inui M, Saito A, Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 1987; 262: 17407.
  • 34
    Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 1988; 107: 2587600.
  • 35
    Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling. Am. J. Physiol. 1993; 264: C158793.
  • 36
    Mueller P, Rudin DO, Tien HT, Wescott WC. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 1962; 194: 97980.
  • 37
    Meissner G. Ryanodine receptor/Ca++ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 1994; 56: 485508.
  • 38
    Ahlijanian MK, Westenbroek RE, Catterall WA. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 1990; 4: 81932.
  • 39
    Beam KG, Knudson CM, Powell JA. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 1986; 320: 16870.
  • 40
    Tanabe T, Beam KG, Adams BA, Niidome T, Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature 1990; 346: 5678.
  • 41
    Nakai J, Tanabe T, Konno T, Adams B, Beam KG. Localization in the II–III loop of the dihydropyridine receptor of a sequence critical for excitation–contraction coupling. J. Biol. Chem. 1998; 273: 24 983–6.
  • 42
    Kugler G, Weiss RG, Flucher BE, Grabner M. Structural requirements of the dihydropyridine receptor alpha1S II–III loop for skeletal-type excitation–contraction coupling. J. Biol. Chem. 2004; 279: 47218.
  • 43
    El-Hayek R, Antoniu B, Wang J, Hamilton SL, Ikemoto N. Identification of calcium release-triggering and blocking regions of the II–III loop of the skeletal muscle dihydropyridine receptor. J. Biol. Chem. 1995; 270: 22 116–18.
  • 44
    Dulhunty AF, Laver DR, Gallant EM, Casarotto MG, Pace SM, Curtis S. Activation and inhibition of skeletal RyR channels by a part of the skeletal DHPR II–III loop. Effects of DHPR Ser687 and FKBP12. Biophys. J. 1999; 77: 189203.
  • 45
    Haarmann CS, Green D, Casarotto MG, Laver DR, Dulhunty AF. The random-coil ‘C’ fragment of the dihydropyridine receptor II–III loop can activate or inhibit native skeletal ryanodine receptors. Biochem. J. 2003; 372: 30516.
  • 46
    Nakai J, Tanabe T, Konno T, Adams B, Beam KG. Localization in the II–III loop of the dihydropyridine receptor of a sequence critical for excitation–contraction coupling. J. Biol. Chem. 1998; 273: 24 983–6.
  • 47
    Nakai J, Ogura T, Protasi F, Franzini-Armstrong C, Allen PD, Beam KG. Functional nonequality of the cardiac and skeletal ryanodine receptors. Proc. Natl Acad. Sci. USA 1997; 94: 101922.
  • 48
    Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 1996; 380: 725.
  • 49
    Dulhunty AF, Curtis SM, Cengia L, Sakowska M, Casarotto MG. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release. Biochem. J. 2004; 379: 16172.
  • 50
    Dulhunty AF, Karunasekara Y, Curtis SM, Harvey PJ, Board PG, Casarotto MG. Role of some unconserved residues in the ‘C’ region of the skeletal DHPR II–III loop. Front. Biosci. 2005; 10: 136881.
  • 51
    Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD. Multiple regions of RyR1 mediate functional and structural interactions with alpha (1S)-dihydropyridine receptors in skeletal muscle. Biophys. J. 2002; 83: 323044.
  • 52
    Cheng W, Altafaj X, Ronjat M, Coronado R. Interaction between the dihydropyridine receptor Ca2+ channel {beta}-subunit and ryanodine receptor type 1 strengthens excitation–contraction coupling. Proc. Natl Acad. Sci. USA 2005; 102: 19 225–30.
  • 53
    Papadopoulos S, Leuranguer V, Bannister RA, Beam KG. Mapping sites of potential proximity between the dihydropyridine receptor and RyR1 in muscle using a cyan fluorescent protein-yellow fluorescent protein tandem as a fluorescence resonance energy transfer probe. J. Biol. Chem. 2004; 279: 44 046–56.
  • 54
    Lorenzon NM, Haarmann CS, Norris EE, Papadopoulos S, Beam KG. Metabolic biotinylation as a probe of supramolecular structure of the triad junction in skeletal muscle. J. Biol. Chem. 2004; 279: 44 057–64.
  • 55
    Beard NA, Laver DR, Dulhunty AF. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog. Biophys. Mol. Biol. 2004; 85: 3369.
  • 56
    Ahern GP, Junankar PR, Dulhunty AF. Subconductance states in single channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophys. J. 1996; 72: 14662.
  • 57
    Lehnart SE, Huang F, Marx SO, Marks AR. Immunophilins and coupled gating of ryanodine receptors. Curr. Top. Med. Chem. 2003; 3: 138391.
  • 58
    Dulhunty AF, Pouliquin P, Coggan M, Gage PW, Board PG. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem. J. 2005; 390: 33343.
  • 59
    Pouliquin P, Pace SM, Curtis SM et al. Effects of an alpha-helical ryanodine receptor C-terminal tail peptide on ryanodine receptor activity: Modulation by Homer. Int. J. Biochem. Cell. Biol. 2006[Epub ahead of print].
  • 60
    Dulhunty AF, Laver D, Curtis SM, Pace S, Haarmann C, Gallant EM. Characteristics of irreversible ATP activation suggest that native skeletal ryanodine receptors can be phosphorylated via an endogenous CaMKII. Biophys. J. 2001; 81: 324052.
  • 61
    Reiken S, Gaburjakova M, Guatimosim S et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J. Biol. Chem. 2003; 278: 44453.
  • 62
    Hurne AM, O’Brien JJ, Wingrove D et al. Ryanodine receptor type 1 (RyR1) mutations C4958S and C4961S reveal excitation-coupled calcium entry (ECCE) is independent of sarcoplasmic reticulum store depletion. J. Biol. Chem. 2005; 280: 36 994–7004.
  • 63
    Ma J, Pan Z. Junctional membrane structure and store operated calcium entry in muscle cells. Front. Biosci. 2003; 8: D24255.
  • 64
    Radermacher M, Wagenknecht T, Grassucci R et al. Cryo-EM of the native structure of the calcium release channel/ryanodine receptor from sarcoplasmic reticulum. Biophys. J. 1992; 61: 93640.
  • 65
    Serysheva II, Orlova EV, Chiu W, Sherman MB, Hamilton SL, Van Heel M. Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat. Struct. Biol. 1995; 2: 1824.
  • 66
    Samso M, Wagenknecht T, Allen PD. Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat. Struct. Mol. Biol. 2005; 12: 53944.
  • 67
    Serysheva II, Hamilton SL, Chiu W, Ludtke SJ. Structure of Ca2+ release channel at 14 A resolution. J. Mol. Biol. 2005; 345: 42731.
  • 68
    Ludtke SJ, Serysheva II, Hamilton SL, Chiu W. The pore structure of the closed RyR1 channel. Structure 2005; 13: 120311.
  • 69
    Yin CC, Blayney LM, Lai FA. Physical coupling between ryanodine receptor–calcium release channels. J. Mol. Biol. 2005; 349: 53846.
  • 70
    Wagenknecht T, Samso M. Three-dimensional reconstruction of ryanodine receptors. Front. Biosci. 2002; 7: D146474.
  • 71
    Liu Z, Zhang J, Wang R, Chen SR, Wagenknecht T. Location of divergent region 2 on the three-dimensional structure of cardiac muscle ryanodine receptor/calcium release channel. J. Mol. Biol. 2004; 338: 53345.
  • 72
    Casarotto MG, Gibson F, Pace SM, Curtis SM, Mulcair M, Dulhunty AF. A structural requirement for activation of skeletal ryanodine receptors by peptides of the dihydropyridine receptor II–III loop. J. Biol. Chem. 2000; 275: 11 631–7.
  • 73
    Casarotto MG, Green D, Pace S, Young J, Dulhunty AF. Activating the ryanodine receptor with dihydropyridine receptor II–III loop segments: Size and charge do matter. Front. Biosci. 2004; 9: 286072.
  • 74
    Cui Y, Karunasekara Y, Harvey PJ, Board PG, Dulhunty AF, Casarotto MG. 1H, 13C and 15N assignments for the II–III loop region of the skeletal dyhydropyridine receptor. J. Biomol. NMR 2005; 32: 8990.
  • 75
    Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 2005; 579: 334654.
  • 76
    Denborough MA, Forster JF, Hudson MC, Carter NG, Zapf P. Biochemical changes in malignant hyperpyrexia. Lancet 1970; i: 11378.
  • 77
    Wehrens XH, Lehnart SE, Huang F et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003; 113: 82940.
  • 78
    Ikemoto N, Yamamoto T. Regulation of calcium release by interdomain interaction within ryanodine receptors. Front. Biosci. 2002; 7: D67183.
  • 79
    Kimura T, Nakamori M, Lueck JD et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum. Mol. Genet 2005; 14: 2189200.
  • 80
    Dulhunty AF, Cengia L, Young J et al. Functional implications of modifying RyR-activating peptides for membrane permeability. Br. J. Pharmacol. 2005; 144: 74354.
  • 81
    Bannister JP, Chanda B, Bezanilla F, Papazian DM. Optical detection of rate-determining ion-modulated conformational changes of the ether-a-go-go K+ channel voltage sensor. Proc. Natl Acad. Sci. USA 2005; 102: 18 718–23.