A Elizabeth Linder, Department of Pharmacology and Toxicology, Michigan State University, B445 Life Sciences Building, East Lansing, MI 48824, USA. Email:


  • 1Our goal was to investigate the body distribution of serotonin (5-hydroxytryptamine; 5-HT) in rats infused with 5-HT (25 µg/kg per min) for 7 days and the contribution of the 5-HT transporter (SERT) for 5-HT uptake into the tissues.
  • 2Mini-osmotic pumps containing 5-HT or vehicle were implanted in rats knocked out for SERT (SERT-KO) or in wild-type (WT) rats. On the 8th day, tissues were harvested for measurements of 5-HT by high-performance liquid chromatography (HPLC). The 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA) was also measured by HPLC, because an increase in 5-HIAA in tissues from rats receiving 5-HT reflects 5-HT uptake followed by metabolism.
  • 3In WT rats infused with 5-HT, an increase in 5-HT or 5-HIAA was observed in the heart, pancreas, thyroid, adrenal gland, kidney, seminal vesicle, bladder, prostate, liver, oesophagus, stomach, femur, trachea, lung and spleen compared with vehicle-infused rats. An increase in 5-HT and 5-HIAA was not observed in aorta, vena cava and jejunum. In tissues from SERT-KO rats infused with 5-HT, the content of 5-HT or 5-HIAA was decreased in most of the tissues studied compared with 5-HT-infused WT rats. Although 5-HT uptake in the kidney, seminal vesicle, prostate, jejunum and trachea is SERT dependent, it is SERT independent in the pancreas. The remaining tissues display SERT-dependent and -independent mechanisms for 5-HT uptake.
  • 4Altogether, tissues from different systems, such as the cardiovascular, endocrine, genitourinary and gastrointestinal, accumulate 5-HT mainly via SERT and, thus, these systems are potential targets for drugs that interfere with 5-HT homeostasis.