• 1
    Thrall G, Lane D, Carroll D, Lip GY. Quality of life in patients with atrial fibrillation: A systematic review. Am. J. Med. 2006; 119: 448 e1–19.
  • 2
    Wolkowicz PE, Grenett HE, Huang J, Wu HC, Ku DD, Urthaler F. A pharmacological model for calcium overload-induced tachycardia in isolated rat left atria. Eur. J. Pharmacol. 2007; 576: 12231.
  • 3
    Hove-Madsen L, Llach A, Bayes-Genis A et al . Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 2004; 110: 135863.
  • 4
    Stambler BS, Fenelon G, Shepard RK, Clemo HF, Guiraudon CM. Characterization of sustained atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J. Cardiovasc. Electrophysiol. 2003; 14: 499507.
  • 5
    Fenelon G, Shepard RK, Stambler BS. Focal origin of atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure. J. Cardiovasc. Electrophysiol. 2003; 14: 1093102.
  • 6
    Bhuiyan ZA, Van Den Berg MP, Van Tintelen JP et al . Expanding spectrum of human RYR2-related disease: New electrocardiographic, structural, and genetic features. Circulation 2007; 116: 156976.
  • 7
    Sumitomo N, Harada K, Nagashima M et al . Catecholaminergic polymorphic ventricular tachycardia: Electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 2003; 89: 6670.
  • 8
    Mackenzie L, Bootman MD, Berridge MJ, Lipp P. Predetermined recruitment of calcium release sites underlies excitation–contraction coupling in rat atrial myocytes. J. Physiol. 2001; 530: 41729.
  • 9
    Mackenzie L, Bootman MD, Laine M et al . The role of inositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J. Physiol. 2002; 541: 395409.
  • 10
    Mackenzie L, Roderick HL, Proven A, Conway SJ, Bootman MD. Inositol 1,4,5-trisphosphate receptors in the heart. Biol. Res. 2004; 37: 5537.
  • 11
    Lo LW, Chen YC, Chen YJ, Wongcharoen W, Lin CI, Chen SA. Calmodulin kinase II inhibition prevents arrhythmic activity induced by alpha and beta adrenergic agonists in rabbit pulmonary veins. Eur. J. Pharmacol. 2007; 571: 197208.
  • 12
    Thomas G, Killeen MJ, Grace AA, Huang CL. Pharmacological separation of early afterdepolarizations from arrhythmogenic substrate in DeltaKPQ Scn5a murine hearts modelling human long QT 3 syndrome. Acta Physiol. 2008; 192: 50517.
  • 13
    Stokoe KS, Balasubramaniam R, Goddard CA, Colledge WH, Grace AA, Huang CL. Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/– murine hearts modelling the Brugada syndrome. J. Physiol. 2007; 581: 25575.
  • 14
    Goddard CA, Ghais NS, Zhang Y et al . Physiological consequences of the P2328S mutation in the ryanodine receptor (RyR2) gene in genetically modified murine hearts. Acta Physiol. 2008; 194: 12340.
  • 15
    Priori SG, Napolitano C, Tiso N et al . Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196200.
  • 16
    Cerrone M, Colombi B, Santoro M et al . Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ. Res. 2005; 96: E7782.
  • 17
    Hirose M, Laurita KR. Calcium-mediated triggered activity is an underlying cellular mechanism of ectopy originating from the pulmonary vein in dogs. Am. J. Physiol. Heart Circ. Physiol. 2007; 292: H18617.
  • 18
    O’Connell TD, Rodrigo MC, Simpson PC. Isolation and culture of adult mouse cardiac myocytes. Methods Mol. Biol. 2007; 357: 27196.
  • 19
    Mitra R, Morad M. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am. J. Physiol. 1985; 249: H105660.
  • 20
    Berlin JR. Spatiotemporal changes of Ca2+ during electrically evoked contractions in atrial and ventricular cells. Am. J. Physiol. 1995; 269: H116570.
  • 21
    Mackenzie L, Roderick HL, Berridge MJ, Conway SJ, Bootman MD. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J. Cell Sci. 2004; 117: 632737.
  • 22
    Woo SH, Cleemann L, Morad M. Diversity of atrial local Ca2+ signalling: Evidence from 2-D confocal imaging in Ca2+-buffered rat atrial myocytes. J. Physiol. 2005; 567: 90521.
  • 23
    Thomas G, Gurung IS, Killeen MJ et al . Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3. J. Physiol. 2007; 578: 8597.
  • 24
    Killeen MJ, Thomas G, Gurung IS et al . Arrhythmogenic mechanisms in the isolated perfused hypokalaemic murine heart. Acta Physiol. 2007; 189: 3346.
  • 25
    Balasubramaniam R, Chawla S, Mackenzie L, Schwiening CJ, Grace AA, Huang CL. Nifedipine and diltiazem suppress ventricular arrhythmogenesis and calcium release in mouse hearts. Pflügers Arch. 2004; 449: 1508.
  • 26
    Saumarez RC, Grace AA. Paced ventricular electrogram fractionation and sudden death in hypertrophic cardiomyopathy and other non-coronary heart diseases. Cardiovasc. Res. 2000; 47: 1122.
  • 27
    Brembilla-Perrot B, Beurrier D, Houriez P et al . Electrophysiologic characteristics of atria in patients without heart disease. Pacing Clin. Electrophysiol. 2005; 28: 106672.
  • 28
    Balasubramaniam R, Chawla S, Grace AA, Huang CL. Caffeine-induced arrhythmias in murine hearts parallel changes in cellular Ca2+ homeostasis. Am. J. Physiol. Heart Circ. Physiol. 2005; 289: H158493.
  • 29
    Venetucci L, Trafford AW, Eisner DA. Illuminating sarcoplasmic reticulum calcium. Circ. Res. 2003; 93: 45.
  • 30
    Bootman MD, Higazi DR, Coombes S, Roderick HL. Calcium signalling during excitation–contraction coupling in mammalian atrial myocytes. J. Cell Sci. 2006; 119: 391525.
  • 31
    Woo SH, Cleemann L, Morad M. Ca2+ current-gated focal and local Ca2+ release in rat atrial myocytes: Evidence from rapid 2-D confocal imaging. J. Physiol. 2002; 543: 43953.
  • 32
    Woo SH, Cleemann L, Morad M. Spatiotemporal characteristics of junctional and nonjunctional focal Ca2+ release in rat atrial myocytes. Circ. Res. 2003; 92: E111.
  • 33
    Jorgensen AO, Shen AC, Arnold W, McPherson PS, Campbell KP. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J. Cell Biol. 1993; 120: 96980.
  • 34
    Daly JW. Caffeine analogs: Biomedical impact. Cell Mol. Life Sci. 2007; 64: 215369.
  • 35
    Trafford AW, Sibbring GC, Diaz ME, Eisner DA. The effects of low concentrations of caffeine on spontaneous Ca release in isolated rat ventricular myocytes. Cell Calcium 2000; 28: 26976.
  • 36
    Venetucci LA, Trafford AW, Eisner DA. Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: Threshold sarcoplasmic reticulum calcium content is required. Circ. Res. 2007; 100: 10511.
  • 37
    Gaburjakova J, Gaburjakova M. Comparison of the effects exerted by luminal Ca2+ on the sensitivity of the cardiac ryanodine receptor to caffeine and cytosolic Ca2+. J. Membr. Biol. 2006; 212: 1728.
  • 38
    Zima AV, Blatter LA. Inositol-1,4,5-trisphosphate-dependent Ca2+ signalling in cat atrial excitation–contraction coupling and arrhythmias. J. Physiol. 2004; 555: 60715.
  • 39
    Vest JA, Wehrens XH, Reiken SR et al . Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 2005; 111: 202532.
  • 40
    Seidler NW, Jona I, Vegh M, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 1989; 264: 17 81623.
  • 41
    Shen JB, Jiang B, Pappano AJ. Comparison of L-type calcium channel blockade by nifedipine and/or cadmium in guinea pig ventricular myocytes. J. Pharmacol. Exp. Ther. 2000; 294: 56270.