• 1
    Asashima, M. and H. Grunz, 1983. Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis. Differentiation, 23, 206212.
  • 2
    Billet, F. S. and T. H. Courtenay, 1973. A stereoscan study of the origin of ciliated cells in the embryonic epidermis of Ambystoma mexicanum. J. Embryol. exp. Morph., 29, 549558.
  • 3
    Chu, D. T. W. and M. W. Klymkowsky, 1989. The appearance of acetylated α-tubulin during early development and cellular differentiation in Xenopus. Develop. Biol., 136, 104117.
  • 4
    Drysdale, T. A. and R. P. Elinson, 1991. Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning. Development, 111, 469478.
  • 5
    Durston, A. J., J. P. M. Timmermans, W. J. Hage, H. F. J. Hendriks, N. J. de Vries, M. Heideveld, and P. D. Nieuwkoop, 1989. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature, 340, 140144.
  • 6
    Fox, H., 1984. Amphibian Morphogenesis. Clifton, New Jersey, Humana Press.
  • 7
    Gimlich, R. L. and J. Braun, 1985. Improved fluorescent compounds for tracing cell lineage. Develop. Biol., 109, 509514.
  • 8
    Green, J. B. A. and J. C. Smith, 1990. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature, 347, 391394.
  • 9
    Hartenstein, V., 1989. Early neurogenesis in Xenopus: The spatiotemporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron, 3, 399411.
  • 10
    Johnson, M. H., 1981. The molecular and cellular basis of preimplantation mouse development. Biol. Rev., 56, 463498.
  • 11
    Jone, E. A. and H. R. Woodland, 1986. Development of the ectoderm in Xenopus: Tissue specification and the role of cell association and division. Cell, 44, 345355.
  • 12
    Keller, R. E., 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis I. Prospective areas and mor-phogenetic movements in the superficial layer. Develop. Biol., 42, 222241.
  • 13
    Keller, R. E., M. Danilchik, R. Gimlich, and J. Shih, 1985. The function of convergent extension during gastrulation of Xenopus laevis. J. Embryol. exp. Morph., 89, Suppl.185209.
  • 14
    Lovtrup, S., 1983. Epigenetic mechanisms in the early amphibian embryo: Cell differentiation and morphogenetic elements. Biol. Rev., 58, 91130.
  • 15
    Nieuwkoop, P. D. and B. Albers, 1990. The role of competence in the cranio-caudal segregation of the central nervous system. Develop. Growth & Differ., 32, 2331.
  • 16
    Nieuwkoop, P. D. and J. Faber, 1967. Normal Table of Xenopus laevis (Daudin). 2nd ed. Amsterdam, North Holland .
  • 17
    Sato, S. M. and T. D. Sargent, 1990. Molecular approaches to dorsoanterior development in Xenopus laevis. Develop. Biol., 137, 135141.
  • 18
    Servetnick, M. and R. M. Grainger, 1991. Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Development, 112, 177188.
  • 19
    Sive, H. L., K. Hattori, and H. Weintraub, 1989. Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell, 58, 171180.
  • 20
    Steinman, R. M., 1968. An electron microscope study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Amer. J. Anat., 122, 1956.
  • 21
    Yanai, T., 1951. On the dorsal gland of the frog, Rana nigromaculata nigromaculata. Annot. Zool. Jpn., 24: 103107.
  • 22
    Yoshizaki, N., 1973. Ultrastructure of the hatching gland cells in the South African clawed toad, Xenopus laevis. Jour. Fac. Sci. Hokkaido Univ. Ser. VI. 18, 469480.
  • 23
    Yoshizaki, N., 1976. Effect of actinomycin D on the differentiation of hatching gland and cilia cell in the frog embryo. Develop. Growth & Differ., 18, 133143.
  • 24
    Yoshizaki, N., 1981. Ionic induction of the frog cement gland cell from presumptive ectodermal tissues. J. Embryol. exp. Morph., 61, 249258.